Single Conversion stage AMplifier - SICAM

This Ph.D. thesis presents a thorough analysis of the so called SICAM SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, nonisolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and especially the so called isolated SICAM with non-modulated transformer voltages. The latter is found to be the most interesting isolated SICAM solution for the modern multichannel audio power amplification systems, since all of the output stages corresponding to the different audio channels can reuse the same input stage and transformer core. While the proposed approach tends to be very simple from topological perspective and allows for reduction of reactive component count, the commutation of the load current in the output bridge and the bridge itself are much more complicated than their Class D predecessors. The main contribution of the thesis can be found in the thorough analysis of the present topologies for isolated SICAMs, as well as the numerous structural improvements and several newly proposed control methods for alleviating the problem of load current commutation and high-performance control of the whole SICAM. Another significant contribution is the presentation of several interesting topologies and associated control principles in the field of non-isolated SICAMs for mains-connected and portable audio amplifiers. Resumè (Abstract in Danish) Denne Ph.D. afhandling giver en grundig analyse af den s̊a kaldte SICAM SIngle Converter stage AMplifier fremgangsmåde til opbygning af audio effektforstærkere til direkt energiomforming. Den aktuelle fremgangsmåde til opbygning af isolerede audio effektforstærkere i dag best̊ar af en isoleret DC elforsyning efterfulgt af en Klasse D audio effektforstærker, som faktisk repræsenterer to-trins løsning, hvor hver halvdel kan ses som seperat og uafhengig del. Den foresl̊aede SICAM-løsning stræber efter s̊a direkte energiomforming fra lysnetindgangen til audioudgangen som overhovedet muligt, ved at dedikere virkningsmåden af delene til hinanden og integrere deres funktioner s̊aledes, at den endelige audio effektforstærker repræsentere en en-trins topologi med højere effektivitet, mindre volumen, mindre printareal, færre komponenter og dermed lavere omkostninger. SICAM fremgangsmåden kan bruges til b̊ade uisolerede og isolerede audio effektforstærkere, men problemstillingerne som i de to tilfælde er i grunden meget forskellige. Uisolerede SICAMs anvendes til b̊ade lysnettilsluttede og batteridrevne apparater. Hovedideen i de uisolerede lysnettilsluttede SICAMs er at forenkle spændingsforsyningen og lave PFC-funktion, mens det lav komponentstress og den god audioperformance bevares ved at reducere indgangsspændingen til Klasse D forstærkeren. Uisolerede batteridrevne SICAMs skal klare den varierende batterispænding og skabe en udgangsspænding, som er b̊ade lavere og højere end batterispænding, men de skal stadigvæk være simple og en entrins energiomformer. I transformatoren i isolerede SICAMs designes spændingsniveauet p̊a sekundæren til det ønskede niveau og derfor er de vigtigste udfordringer her at reducere volumen af den magnetiske kerne og reducere antallet af reaktive komponenter s̊a meget som muligt. Hovedfokus i denne afhandling ligger p̊a isolerede SICAMs og især de s̊akaldte isolerede SICAM med umodulerede transformatorspændinger. Den ovennævnte omformer er den mest interessante SICAM-løsning til multikanalens audio effektforstærkersystemer, fordi alle udgangstrinnene kan bruge det samme indgangstrin og den samme transformatorkerne. Den foresl̊aede løsning er meget enkelt fra en topologiside og tillader reduktion af antalet of reaktive komponenter p̊a sekundærsiden, men kommuteringen af belastningsstrømmen i udgangstrinnet og udgangstrinnets ombygning selv er mere indviklet end i Klasse D forstærkeren. Afhandlingens hovedbidrag findes i den grundige analyse af nuværende topologier for isolerede SICAMs, s̊avel som flere strukturele forbedringer og nogle foresl̊aede kontrol metoder til at forbedre kommuteringen af belastningsstrømmen i udgangstrinnet og realisere højperformance styring af hele SICAM-trinnet. Det anden væsentlige bidrag er fremvisningen af adskillige interessanter topologier og deres styrestrategier til uisolerede SICAMs til lysnettilslutning og brbare audio effektforstærkere.

[1]  V. V. Sastry,et al.  Operation of fixed frequency Class-D series-parallel resonant converter on utility line with active control , 1999, APEC '99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285).

[2]  Jung-Hui Cheng,et al.  Analytic solutions for LLCC parallel resonant converter simplify use of twoand three-element converters , 1998 .

[3]  Aleksandar Prodic,et al.  High-frequency digital PWM controller IC for DC-DC converters , 2003 .

[4]  Mustafar Kamal Hamzah,et al.  Modelling and simulation of a single-phase AC-AC matrix converter using SPWM , 2002, Student Conference on Research and Development.

[5]  Hans-Peter Nee,et al.  Comparison of Commutation Transients of Inverters with Silicon Carbide JFETs with and without Body Diodes , 2004 .

[6]  M. Kazimierczuk,et al.  Analysis and design of parallel resonant convertor at high Q/sub L/ , 1992 .

[7]  Tore Undeland,et al.  Power Electronics: Converters, Applications and Design , 1989 .

[8]  J.D. van Wyk,et al.  A high density three phase high frequency link system for variable frequency output , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[9]  Apparajan Ganesan,et al.  Theory and practical implementation of a fifth-order sigma-delta A/D converter , 1991 .

[10]  Lloyd H. Dixon,et al.  Control Loop Cookbook , 2001 .

[11]  Esam H. Ismail,et al.  Integrated high-quality rectifier-regulators , 1999, IEEE Trans. Ind. Electron..

[12]  E. Hiraki,et al.  New phase-shifted soft-switching PWM series resonant inverter topologies and their practical evaluations , 1997, Proceedings of Second International Conference on Power Electronics and Drive Systems.

[13]  M.A.E. Andersen,et al.  Direct-conversion Switching-mode Audio Power Amplifier with Active Capacitive Voltage Clamp , 2005, 2005 IEEE 36th Power Electronics Specialists Conference.

[14]  Lloyd H. Dixon,et al.  Eddy Current Losses in Transformer Windings and Circuit Wiring , 2000 .

[15]  Marian K. Kazimierczuk,et al.  Analysis of series-parallel resonant converter , 1993 .

[16]  Bonnie C. Baker Anti-Aliasing, Analog Filters for Data Acquisition Systems , 1999 .

[17]  Ashoka K. S. Bhat A resonant converter suitable for 650 V DC bus operation , 1991 .

[18]  Michael A. E. Andersen,et al.  Self-oscillating modulators for direct energy conversion audio power amplifiers , 2005 .

[19]  Olaf Simon,et al.  New concepts for matrix converter design , 2001, IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243).

[20]  Malcolm J. Hawksford,et al.  High Resolution , 2019, Colorado Review.

[21]  Karsten Nielsen Linearity and Efficiency Performance of Switching Audio Power Amplifier Output Stages-A Fundamental Analysis , 1998 .

[22]  Dariusz Czarkowski,et al.  Phase-controlled series-parallel resonant converter , 1993 .

[23]  Michael A. E. Andersen,et al.  New active load voltage clamp for HF-link converters , 2005 .

[24]  Laszlo Huber,et al.  Analysis, design and implementation of the space-vector modulator for forced-commutated cycloconvertors , 1992 .

[25]  A. Zuckerberger,et al.  Single-phase matrix converter , 1997 .

[26]  Michael A.E. Andersen,et al.  Safe-commutation principle for direct single-phase AC-AC converters for use in audio power amplification , 2004 .

[27]  R. O. Caceres,et al.  A boost DC-AC converter: analysis, design, and experimentation , 1999 .

[28]  Lee Empringham,et al.  Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques , 1998, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196).

[29]  L. H. Dixon,et al.  Average current mode control of switching power supplies , 1990 .

[30]  Ashoka K. S. Bhat,et al.  Operation of the LCC-type parallel resonant converter as a low harmonic rectifier , 1996, Proceedings of Applied Power Electronics Conference. APEC '96.

[31]  Karsten Nielsen,et al.  Audio Power Amplifier Techniques with Energy Efficient Power Conversion , 1998 .

[32]  Bruno Putzeys Simple Self-Oscillating Class D Amplifier with Full Output Filter Control , 2005 .

[33]  R. Redl,et al.  A new family of single-stage isolated power-factor correctors with fast regulation of the output voltage , 1994, Proceedings of 1994 Power Electronics Specialist Conference - PESC'94.

[34]  H. van der Broeck,et al.  Analysis and Realization of a Pulse Width Modulator Based on Voltage Space Vectors , 1986, 1986 Annual Meeting Industry Applications Society.

[35]  D. Chang,et al.  Power junction FETs (JFETs) for very low-voltage applications , 2005, Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005..

[36]  David J. Hamo A 50W, 500kHz, Full-Bridge, Phase-Shift, ZVS Isolated DC to DC Converter Using the HIP4081A , 1995 .

[37]  Y. Suzuki,et al.  High frequency link DC-AC converter for UPS with a new voltage clamper , 1990, 21st Annual IEEE Conference on Power Electronics Specialists.

[38]  Rene Groenenberg,et al.  An Asynchronous Switching High-end Power Amplifier , 2002 .

[39]  William McMurray,et al.  The Thyristor Electronic Transformer: a Power Converter Using a High-Frequency Link , 1971 .

[40]  S. Poulsen,et al.  Single conversion audio amplifier and DC-AC converters with high performance and low complexity control scheme , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[41]  P. Kerin High-Frequency Link Inverter for Fuel Cells Based on Multiple-Carrier PWM , 2004 .

[42]  Bimal K. Bose,et al.  High-Frequency Link Power Conversion , 1977, IEEE Transactions on Industry Applications.

[43]  Karsten Nielsen,et al.  The Active Pulse Modulated Transducer (AT) - A Novel Audio Power Conversion System Architecture , 2003 .

[44]  Mikkel Christian Wendelboe Høyerby,et al.  ICEpower Automotive CarFi System , 2004 .

[46]  Beatriz Borges,et al.  Supra resonant fixed frequency full bridge DC-DC resonant converter with reduced switching losses , 1996, Proceedings of Intelec'96 - International Telecommunications Energy Conference.

[47]  A. Alesina,et al.  Analysis and design of optimum-amplitude nine-switch direct AC-AC converters , 1989 .

[48]  Erwin Janssen,et al.  One-Bit Audio: An Overview , 2004 .

[49]  M.S. Mazzola,et al.  Inherently safe DC/DC converter using a normally-on SiC JFET , 2005, Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005..

[50]  J.-P. Hautier,et al.  Power Electronics Systems: Petri-Net Modelling , 1992, Concise Encyclopedia of Modelling & Simulation.

[51]  Michael A. E. Andersen,et al.  Switching-mode Audio Power Amplifiers with Direct Energy Conversion , 2005 .

[52]  S. Poulsen,et al.  Simple PWM modulator topology with excellent dynamic behavior , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[53]  N. Burany,et al.  Safe control of four-quadrant switches , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[54]  Ashoka K. S. Bhat Analysis and design of a series-parallel resonant converter , 1993 .

[55]  J. A. Sabate,et al.  Zero-voltage and zero-current-switching full bridge PWM converter for high power applications , 1994, Proceedings of 1994 Power Electronics Specialist Conference - PESC'94.

[56]  Burak Ozpineci,et al.  Soft-switched performance-enhanced high frequency nonresonant link phase-controlled converter for AC motor drive , 1998, IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200).

[57]  Siu-Chung Wong,et al.  Parallel resonant converter as a circuit simulation primitive , 1995 .

[58]  Karsten Nielsen,et al.  A Novel Audio Power Amplifier Topology with High Efficiency and State-of-the-Art Performance , 2000 .

[59]  Rudolf P. Severns,et al.  Modern DC-to-DC switchmode power converter circuits , 1985 .

[60]  K. M. Smith,et al.  A new PWM controller with one cycle response , 1997, Proceedings of APEC 97 - Applied Power Electronics Conference.

[61]  Robert L. Steigerwald A comparison of half-bridge resonant converter topologies , 1987 .

[62]  M. Milanovic,et al.  Unity input displacement factor correction principle for direct AC to AC matrix converters based on modulation strategy , 2000 .

[63]  Phoivos D. Ziogas,et al.  Analysis and design of Forced Commutated Cycloconverter structures with improved transfer characteristics , 1986, 1985 IEEE Power Electronics Specialists Conference.

[64]  Michael A. E. Andersen,et al.  High Efficient Rectifiers , 2003 .

[65]  Thomas A. Lipo,et al.  Recent progress in the development in solid-state AC motor drives , 1988 .

[66]  Chi K. Tse,et al.  New single-stage PFC regulator using the Sheppard-Taylor topology , 1998 .