2.6 μm InGaAs photodiodes

We have developed In0.82Ga0.18As p‐n homojunction photodiodes that have a long‐wavelength threshold at about 2.65 μm. A compositionally graded InxGa1−xAs layer accommodates the 2% lattice mismatch between the InP substrate and the In0.82Ga0.18As active layers of the device. At −2 V reverse bias the room‐temperature dark current is 3.5 μA (32 mA/cm2), and the quantum efficiency is 70–75% over the wavelength interval of 2.1–2.6 μm.

[1]  A. Moseley,et al.  High-efficiency, low-leakage MOCVD-grown GaInAs/AlInAs heterojunction photodiodes for detection to 2.4μm , 1986 .

[2]  C. M. Wolfe,et al.  Schottky barrier InxGa1−xAs alloy avalanche photodiodes for 1.06 μm , 1974 .

[3]  T. Pearsall,et al.  Impact ionization coefficients for electrons and holes in In0.14Ga0.86As , 1975 .

[4]  John Lehrer Zyskind,et al.  High performance GaInAsSb/GaSb p‐n photodiodes for the 1.8–2.3 μm wavelength range , 1986 .

[5]  C. D. Hussey,et al.  Dependence of fused taper couplers on external refractive index , 1986 .

[6]  G. Olsen,et al.  Improved transmission secondary emission from InxGa1−xP/GaAs self‐supporting films activated to negative electron affinity , 1976 .

[7]  P. Zanzucchi,et al.  Scandium oxide antireflection coatings for superluminescent LEDs. , 1986, Applied optics.

[8]  T. Miya,et al.  Ultimate low-loss single-mode fibre at 1.55 μm , 1979 .

[9]  R. Olshansky,et al.  Propagation in glass optical waveguides , 1979 .

[10]  W. S. Davies,et al.  Bird-proof feed-horn windows for microwave radio system antennas , 1981 .

[11]  G. Olsen,et al.  cw room‐temperature InxGa1−xAs/InyGa1−yP 1.06‐μm lasers , 1976 .

[12]  M. S. Abrahams,et al.  The formation and elimination of helical dislocations in semiconductors , 1971 .

[13]  G. Olsen,et al.  Room‐temperature heterojunction laser diodes of InxGa1−xAs/InyGa1−yP with emission wavelength between 0.9 and 1.15 μm , 1975 .

[14]  J. Matsui,et al.  Impurity effect on grown‐in dislocation density of InP and GaAs crystals , 1978 .