Electrostatic charge accumulation versus electrochemical doping in SrTiO3 electric double layer transistors

In electric double layer transistors with SrTiO3 single crystals, we found distinct differences between electrostatic charge accumulation and electrochemical reaction depending on bias voltages. In contrast to the reversible electrostatic process below 3.7 V with a maximum sheet charge carrier density, nS, of 1014 cm−2, the electrochemical process causes persistent conduction even after removal of the gate bias above 3.75 V. nS reached 1015 cm−2 at 5 V, and the electron mobility at 2 K was as large as 104 cm2/V s. This persistent conduction originates from defect formation within a few micrometers depth of SrTiO3.

[1]  T. Nussbaumer,et al.  Electrochemical carbon nanotube field-effect transistor , 2000, cond-mat/0009171.

[2]  J. Schoonman,et al.  Spatial Extent of Lithium Intercalation in Anatase TiO2 , 1999 .

[3]  Kazuhito Tsukagoshi,et al.  High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte , 2006 .

[4]  A. Fert,et al.  High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. , 2007, Physical review letters.

[5]  Haruhiko Asanuma,et al.  Electrolyte-gated charge accumulation in organic single crystals , 2006 .

[6]  Hongtao Yuan,et al.  Liquid-gated interface superconductivity on an atomically flat film. , 2010, Nature materials.

[7]  A. Goossens,et al.  Electrical and optical properties of TiO2 in accumulation and of lithium titanate Li0.5TiO2 , 2001 .

[8]  H. Shimotani,et al.  Preparation of n-type YBa2Cu3Oy films by an electrochemical reaction method , 2009 .

[9]  Matthew J. Panzer,et al.  Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric , 2005 .

[10]  Toshio Atsuta,et al.  Kawasaki and I , 2007 .

[11]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[12]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[13]  George G. Malliaras,et al.  Microfluidic gating of an organic electrochemical transistor , 2005 .

[14]  Robert E. Jones,et al.  Oxygen vacancy mobility determined from current measurements in thin Ba0.5Sr0.5TiO3 films , 1998 .

[15]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[16]  Masashi Kawasaki,et al.  Insulator-to-metal transition in ZnO by electric double layer gating , 2007 .

[17]  Hongtao Yuan,et al.  High‐Density Carrier Accumulation in ZnO Field‐Effect Transistors Gated by Electric Double Layers of Ionic Liquids , 2009 .

[18]  Gildas Diguet,et al.  Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene) , 2005 .

[19]  P. W. Chapman,et al.  Electron Mobility in Semiconducting Strontium Titanate , 1967 .