Meaning in Classical Mathematics: Is it at Odds with Intuitionism?

We examine the classical/intuitionist divide, and how it reflects on modern theories of infinitesimals. When leading intuitionist Heyting announced that "the creation of non-standard analysis is a standard model of important mathematical research", he was fully aware that he was breaking ranks with Brouwer. Was Errett Bishop faithful to either Kronecker or Brouwer? Through a comparative textual analysis of three of Bishop's texts, we analyze the ideological and/or pedagogical nature of his objections to infinitesimals a la Robinson. Bishop's famous "debasement" comment at the 1974 Boston workshop, published as part of his Crisis lecture, in reality was never uttered in front of an audience. We compare the realist and the anti-realist intuitionist narratives, and analyze the views of Dummett, Pourciau, Richman, Shapiro, and Tennant. Variational principles are important physical applications, currently lacking a constructive framework. We examine the case of the Hawking-Penrose singularity theorem, already analyzed by Hellman in the context of the Quine-Putnam indispensability thesis.

[1]  P. Giordano The ring of Fermat reals , 2010 .

[2]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[3]  T. J. Demos Response to Questionnaire on Art and Politics , 2008 .

[4]  Abraham Robinson Selected papers of Abraham Robinson , 1978 .

[5]  Abraham Robinson,et al.  On the metamathematics of algebra , 1963 .

[6]  Jeff Cheeger,et al.  $C^\alpha$-compactness for manifolds with Ricci curvature and injectivity radius bounded below , 1992 .

[7]  Saharon Shelah,et al.  A definable nonstandard model of the reals , 2004, J. Symb. Log..

[8]  G. Stolzenberg,et al.  Review: Errett Bishop, Foundations of constructive analysis , 1970 .

[9]  R. Ely Nonstandard Student Conceptions About Infinitesimals , 2010 .

[10]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[11]  Philip Ehrlich,et al.  Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .

[12]  Herbert Meschkowski Aus den Briefbüchern Georg Cantors , 1965 .

[13]  Ivor Grattan-Guinness,et al.  The mathematics of the past: distinguishing its history from our heritage , 2004 .

[14]  Geoffrey Hellman,et al.  Gleason's theorem is not constructively provable , 1993, J. Philos. Log..

[15]  Bas Spitters,et al.  Intuitionistic Quantum Logic of an n-level System , 2009, Foundations of Physics.

[16]  David A. Ross,et al.  A nonstandard proof of a lemma from constructive measure theory , 2006, Math. Log. Q..

[17]  Paul R. Halmos,et al.  I Want to Be A Mathematician: An Automathography , 1986 .

[18]  Errett Bishop The crisis in contemporary mathematics , 1975 .

[19]  Abraham Robinson,et al.  Solution of an invariant subspace problem of K , 1966 .

[20]  Anschauung in Hilbert ’ s Conception of Geometry : Between Arithmetic and General Relativity ’ , 2005 .

[21]  G. Hellman On the Scope and Force of Indispensability Arguments , 1992, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[22]  Murray Rosenblatt,et al.  Errett Bishop: Reflections on him and his research , 1985 .

[23]  Erik Palmgren,et al.  Developments in Constructive Nonstandard Analysis , 1998, Bulletin of Symbolic Logic.

[24]  The Education of a Pure Mathematician , 1999 .

[25]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[26]  Jan Mycielski The Banach-Tarski Paradox: Foreword by Jan Mycielski , 1985 .

[27]  A. Heyting,et al.  Intuitionism: An introduction , 1956 .

[28]  R. Goldblatt Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .

[29]  H. Weyl,et al.  Über die neue Grundlagenkrise der Mathematik , 1921 .

[30]  Penelope Maddy The Roots of Contemporary Platonism , 1989, J. Symb. Log..

[31]  Geoffrey Hellman Quantum Mechanical Unbounded Operators and Constructive Mathematics – a Rejoinder to Bridges , 1997, J. Philos. Log..

[32]  Dorothy Bishop Psychology and biology of language and thought: essays in honor of eric lenneberg George A. Miller & Elizabeth Lenneberg (Eds) Academic Press, New York (1978). 294 pp., £12.65 , 1979, Neuroscience.

[33]  Die Grundlagen der Physik. 1. , 1915 .

[34]  J. Myhill,et al.  Choice Implies Excluded Middle , 1978, Math. Log. Q..

[35]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[36]  Antoni Malet,et al.  Renaissance notions of number and magnitude , 2006 .

[37]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[38]  Ivor Grattan-Guinness,et al.  Solving wigner’s mystery: The reasonable (though perhaps limited) effectiveness of mathematics in the natural sciences , 2008 .

[39]  Solomon Feferman,et al.  Relationships between Constructive, Predicative and Classical Systems of Analysis , 2000 .

[40]  M. Katz Systolic geometry and topology , 2007 .

[41]  M. Beeson Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .

[42]  Gottlob Frege,et al.  Begriffsschrift und andere Aufsätze , 1964 .

[43]  Donald Gillies,et al.  Revolutions in Mathematics , 1975 .

[44]  A. Connes Noncommutative geometry and reality , 1995 .

[45]  E. Davies A Defence of Mathematical Pluralism , 2005 .

[46]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[47]  Beyond the Axioms: The Question of Objectivity in Mathematics , 2001 .

[48]  Mark Colyvan,et al.  The Indispensability of Mathematics , 2001 .

[49]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[50]  M. Dummett Elements of Intuitionism , 2000 .

[51]  Anderson-Cheeger limits of smooth Riemannian manifolds, and other Gromov-Hausdorff limits , 2007 .

[52]  D. Raine General relativity , 1980, Nature.

[53]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[54]  Errett Bishop,et al.  Mathematics as a Numerical Language , 1970 .

[55]  Gert Schubring,et al.  Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .

[56]  Erich H. Reck,et al.  "Clarifying the Nature of the Infinite": the Development of Metamathematics and Proof Theory , 2001 .

[57]  M. Crowe Duhem and history and philosophy of mathematics , 1990, Synthese.

[58]  S. Shostak Philosophy of Mathematics and Natural Science , 2013 .

[59]  F. William Lawvere,et al.  Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .

[60]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[61]  A. Troelstra Constructivism in mathematics , 1988 .

[62]  H. Billinge Did Bishop Have a Philosophy of Mathematics , 2003 .

[63]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[64]  Geoffrey Hellman,et al.  Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem , 1993, J. Philos. Log..

[65]  The Significance of Weyl’s Das Kontinuum , 2000 .

[66]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.

[67]  S. Shapiro Why Anti-Realists and Classical Mathematicians Cannot Get Along , 2001 .

[68]  Solomon Feferman,et al.  Conceptions of the Continuum , 2009 .

[69]  K. D. Stroyan Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .

[70]  A. Macintyre Abraham Robinson, 1918–1974 , 1977 .

[71]  Kyeong Hah Roh Students’ images and their understanding of definitions of the limit of a sequence , 2008 .

[72]  Paulo Oliva,et al.  Proof Mining: A Systematic Way of Analysing Proofs in Mathematics , 2002 .

[73]  D. Tall Natural and Formal Infinities , 2001 .

[74]  Ed Dubinsky,et al.  Preservice Teachers’ Understanding of the Relation Between a Fraction or Integer and Its Decimal Expansion , 2009 .

[75]  W. Luxemburg Non-Standard Analysis , 1977 .

[76]  Paul Bernays,et al.  Natur und mathematisches Erkennen : Vorlesungen, gehalten 1919-1920 in Göttingen , 1992 .

[77]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[78]  Jeremy Avigad Weak Theories of Nonstandard Arithmetic and Analysis , 2000 .

[79]  A. Sfard Reification as the birth of metaphor , 1994 .

[80]  Philip E. B. Jourdain,et al.  The Future of Mathematics , 1909 .

[81]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[82]  Paul R. Halmos,et al.  Invariant subspaces of polynomially compact operators. , 1966 .

[83]  K. Sullivan The Teaching of Elementary Calculus Using the Nonstandard Analysis Approach. , 1976 .

[84]  M. Katz,et al.  Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.

[85]  G. Kreisel WITTGENSTEIN'S REMARKS ON THE FOUNDATIONS OF MATHEMATICS , 1958 .

[86]  John Weiner,et al.  Letter to the Editor , 1992, SIGIR Forum.

[87]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[88]  V. M. Tikhomirov On Rings of Continuous Functions on Topological Spaces , 1991 .

[89]  M. White From a philosophical point of view , 2004 .

[91]  S. Myers,et al.  Riemannian manifolds with positive mean curvature , 1941 .

[92]  H. Billinge Applied Constructive Mathematics: On Hellman's 'Mathematical Constructivism in Spacetime' , 2000, The British Journal for the Philosophy of Science.

[93]  Melcher P. Fobes,et al.  Calculus and analytic geometry , 1963 .

[94]  E. Perkins NONSTANDARD METHODS IN STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS , 1988 .

[95]  Abraham Adolf Fraenkel Einleitung in die Mengenlehre , 1919 .

[96]  R. Diaconescu Axiom of choice and complementation , 1975 .

[97]  Fred Richman,et al.  Interview with a constructive mathematician , 1996 .

[98]  E. Bishop Foundations of Constructive Analysis , 2012 .

[99]  David Tall,et al.  Advanced Mathematical Thinking , 1994 .

[100]  H. Keisler THE ULTRAPRODUCT CONSTRUCTION , 2009 .

[101]  A. Tarski,et al.  Une contribution à la théorie de la mesure , 1930 .

[102]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.

[103]  Dummett on Meaning and Classical Logic , 1986 .

[104]  Jeremy Avigad,et al.  The metamathematics of ergodic theory , 2009, Ann. Pure Appl. Log..

[105]  J. Isbell,et al.  On the Continuity of the Real Roots of an Algebraic Equation , 1953 .

[106]  Lorenzo Magnani,et al.  Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.

[107]  S. Yau,et al.  String theory and the geometry of the Universe's hidden dimensions , 2010 .

[108]  E. Casari Logic and the Foundations of Mathematics , 1981 .

[109]  E. Fernández THE STUDENTS' TAKE ON THE EPSILON-DELTA DEFINITION OF A LIMIT , 2004 .

[110]  Imre Lakatos,et al.  Cauchy and the continuum , 1978 .

[111]  Geoffrey Hellman Never say 'never'! On the communication problem between intuitionism and classicism , 1989 .

[112]  Lorenzo Magnani,et al.  Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .

[113]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[114]  Peter Schuster,et al.  Reuniting the antipodes-constructive and nonstandard views of the continuum : symposium proceedings, San Servolo, Venice, Italy, May 16-22, 1999 , 2001 .

[115]  Douglas S. Bridges,et al.  Can Constructive Mathematics be Applied in Physics? , 1999, J. Philos. Log..

[116]  J. Burgess Mathematics and Bleak House , 2004 .

[117]  David Tall,et al.  Dynamic mathematics and the blending of knowledge structures in the calculus , 2009 .

[118]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[119]  Daesuk Han Wittgenstein and the Real Numbers , 2010 .

[120]  Geoffrey Hellman,et al.  Mathematical Constructivism in Spacetime , 1998, The British Journal for the Philosophy of Science.

[121]  Heinrich Rust Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.

[122]  Solomon Feferman,et al.  WHAT RESTS ON WHAT? THE PROOF-THEORETIC ANALYSIS OF MATHEMATICS , 2002 .

[123]  D. Tall Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.

[124]  William W. Tait,et al.  Against intuitionism: Constructive mathematics is part of classical mathematics , 1983, J. Philos. Log..

[125]  André Weil,et al.  The Future of Mathematics , 1950 .

[126]  D. Westerståhl Proofs instead of Meaning Explanations: Understanding Classical vs Intuitionistic Mathematics from the Outside , 2008 .

[127]  R. Penrose Techniques of Differential Topology in Relativity , 1972 .

[128]  J. Naets How to Define a Number? A General Epistemological Account of Simon Stevin’s Art of Defining , 2010 .

[129]  J. Cleave Cauchy, Convergence and Continuity , 1971, The British Journal for the Philosophy of Science.

[130]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.