A bilevel Farkas lemma to characterizing global solutions of a class of bilevel polynomial programs

We present a form of Farkas' lemma for bilevel inequality systems and use it to obtain a complete characterization of global solutions of a class of bilevel polynomial programs with lower-level linear programs, where the objective functions of the upper-level polynomial programs are coercive. Consequently, we show that a sequence of optimal values of related semidefinite linear programs converges to the global optimal value of a bilevel polynomial program under suitable conditions.

[1]  V. Jeyakumar,et al.  Farkas Lemma: Generalizations , 2009, Encyclopedia of Optimization.

[2]  Jane J. Ye,et al.  New Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches , 2010, SIAM J. Optim..

[3]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[4]  Stephan Dempe,et al.  KKT Reformulation and Necessary Conditions for Optimality in Nonsmooth Bilevel Optimization , 2014, SIAM J. Optim..

[5]  Johan Löfberg,et al.  Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.

[6]  Herminia I. Calvete,et al.  Linear bilevel programming with interval coefficients , 2012, J. Comput. Appl. Math..

[7]  Vaithilingam Jeyakumar,et al.  Farkas’ lemma: three decades of generalizations for mathematical optimization , 2014 .

[8]  Vaithilingam Jeyakumar,et al.  On Polynomial Optimization Over Non-compact Semi-algebraic Sets , 2013, J. Optim. Theory Appl..

[9]  Vaithilingam Jeyakumar,et al.  Exact SDP relaxations for classes of nonlinear semidefinite programming problems , 2012, Oper. Res. Lett..

[10]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[11]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[12]  Christodoulos A. Floudas,et al.  Global Optimization of Nonlinear Bilevel Programming Problems , 2001, J. Glob. Optim..

[13]  Vaithilingam Jeyakumar,et al.  Robust Farkas’ lemma for uncertain linear systems with applications , 2011 .

[14]  Pushpendra Kumar,et al.  An Overview On Bilevel Programming , 2012 .

[15]  Alain B. Zemkoho,et al.  Necessary optimality conditions in pessimistic bilevel programming , 2014 .

[16]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[17]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[18]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[19]  J. Lasserre An Introduction to Polynomial and Semi-Algebraic Optimization , 2015 .

[20]  Vaithilingam Jeyakumar,et al.  A new class of alternative theorems for SOS-convex inequalities and robust optimization , 2015 .

[21]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[22]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[23]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..

[24]  Vaithilingam Jeyakumar,et al.  Convergence of the Lasserre hierarchy of SDP relaxations for convex polynomial programs without compactness , 2013, Oper. Res. Lett..

[25]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[26]  Marco A. López,et al.  From the Farkas Lemma to the Hahn-Banach Theorem , 2014, SIAM J. Optim..

[27]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .