Pressure-induced transitions in FePS$_3$: Structural, magnetic and electronic properties

FePS$_3$ is a prototype van der Waals layered antiferromagnet and a Mott insulator under ambient conditions, which has been recently reported to go through a pressure-induced dimensionality crossover and an insulator-to-metal transition. These transitions also lead to the appearance of a novel magnetic metallic state. To further understand these emergent structural and physical properties, we have performed a first-principles study using van der Waals and Hubbard $U$ corrected density functional theory including a random structure search. Our computational study attempts to interpret the experimental coexistence of the low- and intermediate-pressure phases and we predict a novel high-pressure phase with distinctive dimensionality and different possible origins of metallicity.

[1]  D. Daisenberger,et al.  Comparative structural evolution under pressure of powder and single crystals of the layered antiferromagnet FePS3 , 2022, Physical Review B.

[2]  Xiaodong Xu,et al.  Dynamical criticality of spin-shear coupling in van der Waals antiferromagnets , 2022, Nature Communications.

[3]  B. Paulus,et al.  Stability of van der Waals FePX3 materials (X: S, Se) for water-splitting applications , 2022, 2D Materials.

[4]  Wenge Yang,et al.  Critical topology and pressure-induced superconductivity in the van der Waals compound AuTe2Br , 2022, npj Quantum Materials.

[5]  C. Autieri,et al.  Limited Ferromagnetic Interactions in Monolayers of MPS3 (M = Mn and Ni) , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[6]  S. Chaturvedi,et al.  Raman and first-principles study of the pressure-induced Mott-insulator to metal transition in bulk FePS3 , 2021, Journal of Physics and Chemistry of Solids.

[7]  Yanming Ma,et al.  Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals , 2021, Proceedings of the National Academy of Sciences.

[8]  David M. Jarvis,et al.  Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3 , 2021, Physical Review X.

[9]  Y. Y. Chen,et al.  Pressure induced superconductivity in MnSe , 2020, Nature Communications.

[10]  Jian-Tao Wang,et al.  Dimensional crossover tuned by pressure in layered magnetic NiPS3 , 2020, Science China Physics, Mechanics & Astronomy.

[11]  D. Vanderbilt,et al.  Symmetry crossover in layered MPS3 complexes (M=Mn, Fe, Ni) via near-field infrared spectroscopy , 2020 .

[12]  T. Klapwijk,et al.  Quantum breakdown of superconductivity in low-dimensional materials , 2020, Nature Physics.

[13]  H. Walker,et al.  Evidence for biquadratic exchange in the quasi-two-dimensional antiferromagnet FePS3 , 2020, Journal of Applied Physics.

[14]  R. A. Evarestov,et al.  Origin of pressure‐induced insulator‐to‐metal transition in the van der Waals compound FePS3 from first‐principles calculations , 2020, J. Comput. Chem..

[15]  D. Daisenberger,et al.  Tuning dimensionality in van-der-Waals antiferromagnetic Mott insulators TMPS3 , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Xingxing Jiang,et al.  Ab initio study of pressure-driven phase transition in FePS3 and FePSe3 , 2019, Physical Review B.

[17]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[18]  D. Vanderbilt,et al.  Mott Metal-Insulator Transitions in Pressurized Layered Trichalcogenides. , 2018, Physical review letters.

[19]  D. Daisenberger,et al.  Pressure-Induced Electronic and Structural Phase Evolution in the van der Waals Compound FePS_{3}. , 2018, Physical review letters.

[20]  B. Halperin On the Hohenberg–Mermin–Wagner Theorem and Its Limitations , 2018, Journal of Statistical Physics.

[21]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[22]  Wenge Yang,et al.  Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover , 2018, Nature Communications.

[23]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[24]  Andrew M. Rappe,et al.  Thin-film ferroelectric materials and their applications , 2017 .

[25]  T. J. Hicks,et al.  Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3 , 2016 .

[26]  Wenge Yang,et al.  Pressure-Driven Cooperative Spin-Crossover, Large-Volume Collapse, and Semiconductor-to-Metal Transition in Manganese(II) Honeycomb Lattices. , 2016, Journal of the American Chemical Society.

[27]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[28]  Je-Guen Park Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Paul R. C. Kent,et al.  Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2 , 2016 .

[30]  Bartomeu Monserrat,et al.  Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells , 2015, 1510.04418.

[31]  Jian-lin Luo,et al.  Superconductivity in the vicinity of antiferromagnetic order in CrAs , 2014, Nature Communications.

[32]  Chris J. Pickard,et al.  OptaDOS: A tool for obtaining density of states, core-level and optical spectra from electronic structure codes , 2014, Comput. Phys. Commun..

[33]  C Z Wang,et al.  An adaptive genetic algorithm for crystal structure prediction , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  V. Van Speybroeck,et al.  Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals , 2012, 1204.2733.

[35]  T. J. Hicks,et al.  The magnon dynamics and spin exchange parameters of FePS3 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Chris J. Pickard,et al.  OptaDOS - a new tool for EELS calculations , 2012 .

[37]  Jian Lv,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[38]  Freiburg i. Br.,et al.  Zeitschrift für anorganische und allgemeine Chemie , 2012 .

[39]  S. Sinogeikin,et al.  Pressure-induced superconductivity in LaFeAsO: The role of anionic height and magnetic ordering , 2014 .

[40]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  R. Cava,et al.  Why does undoped FeSe become a high-Tc superconductor under pressure? , 2009, Physical review letters.

[42]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[43]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[44]  S. Lebègue,et al.  Modeling spin-crossover compounds by periodic DFT+U approach , 2008 .

[45]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[46]  T. J. Hicks,et al.  Single-crystal and powder neutron diffraction experiments on Fe P S 3 : Search for the magnetic structure , 2007 .

[47]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[48]  B. Roessli,et al.  Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3 , 2006 .

[49]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[50]  T. J. Hicks,et al.  Contrasting antiferromagnetic order between FePS3 and MnPS3 , 2002 .

[51]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[52]  G. Lonzarich,et al.  Magnetically mediated superconductivity in quasi-two and three dimensions , 2001 .

[53]  T. J. Hicks,et al.  Ordering and the nature of the spin flop phase transition in MnPS3 , 2000 .

[54]  M. Payne,et al.  Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane‐wave study , 2000 .

[55]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[58]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[59]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[60]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[61]  A. Hermann,et al.  Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system , 1988, Nature.

[62]  S. Santangelo,et al.  Optical absorption spectra of some transition metal thiophosphates , 1986 .

[63]  M. Zerner,et al.  A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries , 1985 .

[64]  G. Ouvrard,et al.  Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd) , 1985 .

[65]  G. L. Flem,et al.  Magnetic interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se) , 1982 .

[66]  G. Ouvrard,et al.  Physical properties of lithium intercalation compounds of the layered transition-metal chalcogenophosphites , 1979 .

[67]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[68]  G. Eulenberger,et al.  Uber die Kristallstrukturen von Fe2P2Se6 und Fe2P2S6 , 1973 .

[69]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .

[70]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[71]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.