BDS-3 precise orbit and clock solution at Wuhan University: status and improvement

[1]  O. Montenbruck,et al.  On the potential contribution of BeiDou-3 to the realization of the terrestrial reference frame scale , 2022, GPS Solutions.

[2]  U. Hugentobler,et al.  BeiDou Satellite Radiation Force Models for Precise Orbit Determination and Geodetic Applications , 2021, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Xiaolei Dai,et al.  BDS-2 and BDS-3 combined precise orbit determination with hybrid ambiguity resolution , 2021, Measurement.

[4]  Baocheng Zhang,et al.  Characteristics of receiver-related biases between BDS-3 and BDS-2 for five frequencies including inter-system biases, differential code biases, and differential phase biases , 2021, GPS Solutions.

[5]  Chen Wang,et al.  Solar Radiation Pressure Modeling and Application of BDS Satellites , 2020 .

[6]  Rolf Dach,et al.  Adopting the empirical CODE orbit model to Galileo satellites , 2020, Advances in Space Research.

[7]  Gege Liu,et al.  Precise Orbit and Clock Products of Galileo, BDS and QZSS from MGEX Since 2018: Comparison and PPP Validation , 2020, Remote. Sens..

[8]  Krzysztof Sośnica,et al.  Quality assessment of experimental IGS multi-GNSS combined orbits , 2020, GPS Solutions.

[9]  Xingxing Li,et al.  Improving BDS-3 precise orbit determination for medium earth orbit satellites , 2020, GPS Solutions.

[10]  Adrian Jäggi,et al.  Enhanced orbit modeling of eclipsing Galileo Satellites , 2019 .

[11]  Chenchen Liu,et al.  A Priori Solar Radiation Pressure Model for BeiDou-3 MEO Satellites , 2019, Remote. Sens..

[12]  F. Sun,et al.  Performance Evaluation of Beidou-3 On-Board Atomic Clock , 2019, Lecture Notes in Electrical Engineering.

[13]  Feng Zhang,et al.  Precise orbit determination for BDS-3 satellites using satellite-ground and inter-satellite link observations , 2019, GPS Solutions.

[14]  Ulrich Schreiber,et al.  The ILRS: approaching 20 years and planning for the future , 2019, Journal of Geodesy.

[15]  Jingnan Liu,et al.  The contribution of intersatellite links to BDS ‐3 orbit determination: Model refinement and comparisons , 2019, Navigation.

[16]  Yue Mao,et al.  Introduction to BeiDou‐3 navigation satellite system , 2019, Navigation.

[17]  Xia Lin,et al.  Satellite Geometry and Attitude Mode of BDS-3 MEO Satellites Developed by SECM , 2018, Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018).

[18]  Qile Zhao,et al.  Empirically derived model of solar radiation pressure for BeiDou GEO satellites , 2018, Journal of Geodesy.

[19]  Qile Zhao,et al.  Yaw attitude modeling for BeiDou I06 and BeiDou-3 satellites , 2018, GPS Solutions.

[20]  Wei Wang,et al.  Elevation-dependent pseudorange variation characteristics analysis for the new-generation BeiDou satellite navigation system , 2018, GPS Solutions.

[21]  Jinlong Li,et al.  Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system , 2018, Science China Earth Sciences.

[22]  Xiaogong Hu,et al.  Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements , 2018, Journal of Geodesy.

[23]  Xin Li,et al.  Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks , 2018, Journal of Geodesy.

[24]  Peter Steigenberger,et al.  GNSS satellite transmit power and its impact on orbit determination , 2018, Journal of Geodesy.

[25]  Qile Zhao,et al.  An a priori solar radiation pressure model for the QZSS Michibiki satellite , 2018, Journal of Geodesy.

[26]  Gang Li,et al.  Globalization highlight: orbit determination using BeiDou inter-satellite ranging measurements , 2017, GPS Solutions.

[27]  Cuixian Lu,et al.  Initial assessment of the COMPASS/BeiDou-3: new-generation navigation signals , 2017, Journal of Geodesy.

[28]  Peter Steigenberger,et al.  The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) - Achievements, prospects and challenges , 2017 .

[29]  Qile Zhao,et al.  Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis , 2017, GPS Solutions.

[30]  Qile Zhao,et al.  Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison , 2016, Journal of Geodesy.

[31]  A. S. Ganeshan,et al.  GNSS Satellite Geometry and Attitude Models , 2015 .

[32]  R. Dach,et al.  CODE’s new solar radiation pressure model for GNSS orbit determination , 2015, Journal of Geodesy.

[33]  O. Montenbruck,et al.  Enhanced solar radiation pressure modeling for Galileo satellites , 2015, Journal of Geodesy.

[34]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[35]  P. Steigenberger,et al.  Adjustable box-wing model for solar radiation pressure impacting GPS satellites , 2012 .

[36]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 ( EGM 2008 ) , 2012 .

[37]  U. Hugentobler,et al.  Impact of Earth radiation pressure on GPS position estimates , 2012, Journal of Geodesy.

[38]  Jim R. Ray,et al.  On the precision and accuracy of IGS orbits , 2009 .

[39]  Liu Jing-nan,et al.  PANDA software and its preliminary result of positioning and orbit determination , 2003, Wuhan University Journal of Natural Sciences.

[40]  Gerd Gendt,et al.  Improving carrier-phase ambiguity resolution in global GPS network solutions , 2005 .

[41]  J. Dow,et al.  PRECISE ORBIT DETERMINATION , 2004 .

[42]  M. Houston,et al.  Progress and Performance , 2003 .

[43]  L. Mervart,et al.  Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. , 1994 .

[44]  和孝 牧野,et al.  The Potential , 2006, The Digital Transformation of Property in Greater China.