Determination of glucosinolates in canola seeds using anion exchange membrane extraction combined with the high-pressure liquid chromatography detection.

A rapid, simple, and reliable method for the determination of individual glucosinolates in canola seeds was developed using a semiquantitative extraction of glucosinolates with anion exchange membranes and HPLC detection. In this one-step extraction procedure, a membrane (7 cm(2)) is placed in the seed suspension prepared by grinding and boiling 0.8 g of seeds in 20 mL of water. After 10 min of shaking on the mechanical shaker, the membrane is removed from the suspension, washed, and transferred to a vial containing 5 mL of 1 N tetramethylammonium chloride. The glucosinolates are eluted from the membrane by shaking the membrane for 10 min with the eluting solvent. The glucosinolate content in membrane eluates is determined by HPLC using sinigrin standards. A coefficient of variation ranging from 1.9 to 7.6% for aliphatic glucosinolates indicated very good reproducibility of the method. Because of the instability of 4-hydroxyglucobrassicin, the coefficient of variation for the determination of this indolyl glucosinolate was 13.9%. To verify the results of the membrane extraction/HPLC detection, this new method was compared with the existing colorimetric and GC procedures. Very good correlation (R(2) = 0.98) was obtained between the total glucosinolates determined by the membrane extraction/HPLC method and the palladate colorimetric procedure for 17 canola varieties. Concentrations of individual glucosinolates in five canola varieties were compared with the GC data. Very good agreement between these two methods was obtained for aliphatic glucosinolates. However, the membrane extraction/HPLC method yielded slightly higher values for 4-hydroxyglucobrassicin than the GC method, possibly indicating that the decomposition of this glucosinolate was reduced during the sample extraction with the membranes. The simplicity and low cost of the membrane extraction/HPLC method make it an attractive alternative to the existing procedures for glucosinolate analysis in canola seeds.