On the number of nodes in n -dimensional cubature formulae of degree 5 for integrals over the ball
暂无分享,去创建一个
[1] H. M. Möller,et al. Lower Bounds for the Number of Nodes in Cubature Formulae , 1979 .
[2] Yuan Xu. Lower bound for the number of nodes of cubature formulae on the unit ball , 2003, J. Complex..
[3] Ronald Cools,et al. A new lower bound for the number of nodes in cubature formulae of degree 4 n + 1 for some circularly symmetric integrals , 1993 .
[4] Ronald Cools,et al. An encyclopaedia of cubature formulas , 2003, J. Complex..
[5] J. Radon,et al. Zur mechanischen Kubatur , 1948 .
[6] Yuan Xu,et al. Multivariate Gaussian cubature formulae , 1995 .
[7] Eiichi Bannai,et al. Tight spherical designs, I , 1979 .
[8] Yuan Xu,et al. Constructing cubature formulae by the method of reproducing kernel , 2000, Numerische Mathematik.
[9] B. Reznick. Sums of Even Powers of Real Linear Forms , 1992 .
[10] J. Seidel,et al. Spherical codes and designs , 1977 .
[11] J. J. Seidel,et al. The regular two-graph on 276 vertices , 1975, Discret. Math..
[12] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[13] Akihiro Munemasa,et al. The nonexistence of certain tight spherical designs , 2005 .
[14] Bruce Reznick. Some constructions of spherical 5-designs☆ , 1995 .
[15] A. H. Stroud,et al. Some fifth degree integration formulas for symmetric regions II , 1967 .
[16] R. M. Damerell,et al. Tight Spherical Disigns, II , 1980 .