Insect-resistant transgenic plants in a multi-trophic context.

So far, genetic engineering of plants in the context of insect pest control has involved insertion of genes that code for toxins, and may be characterized as the incorporation of biopesticides into classical plant breeding. In the context of pesticide usage in pest control, natural enemies of herbivores have received increasing attention, because carnivorous arthropods are an important component of insect pest control. However, in plant breeding programmes, natural enemies of herbivores have largely been ignored, although there are many examples that show that plant breeding affects the effectiveness of biological control. Negative influences of modified plant characteristics on carnivorous arthropods may induce population growth of new, even more harmful pest species that had no pest status prior to the pesticide treatment. Sustainable pest management will only be possible when negative effects on non-target, beneficial arthropods are minimized. In this review, we summarize the effects of insect-resistant crops and insect-resistant transgenic crops, especially Bt crops, from a food web perspective. As food web components, we distinguish target herbivores, non-target herbivores, pollinators, parasitoids and predators. Below-ground organisms such as Collembola, nematodes and earthworms should also be included in risk assessment studies, but have received little attention. The toxins produced in Bt plants retain their toxicity when bound to the soil, so accumulation of these toxins is likely to occur. Earthworms ingest the bound toxins but are not affected by them. However, earthworms may function as intermediaries through which the toxins are passed on to other trophic levels. In studies where effects of insect-resistant (Bt) plants on natural enemies were considered, positive, negative and no effects have been found. So far, most studies have concentrated on natural enemies of target herbivores. However, Bt toxins are structurally rearranged when they bind to midgut receptors, so that they are likely to lose their toxicity inside target herbivores. What happens to the toxins in non-target herbivores, and whether these herbivores may act as intermediaries through which the toxins may be passed on to the natural enemies, remains to be studied.

[1]  M. Willson,et al.  Leaf domatia and mites on Australasian plants: ecological and evolutionary implications , 1989 .

[2]  A. Hilbeck,et al.  Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla cornea (Neuroptera: Chrysopidae) , 1998 .

[3]  M. Peferoen,et al.  Mechanism of insect resistance to Bacillus thuringiensis crystal proteins. , 1990 .

[4]  R. Thurston,et al.  Inhibition by Nicotine of Emergence of Apanteles congregatus from Its Host, the Tobacco Hornworm. , 1972 .

[5]  H. Tapp,et al.  Dot Blot Enzyme-Linked Immunosorbent Assay for Monitoring the Fate of Insecticidal Toxins from Bacillus thuringiensis in Soil , 1995, Applied and environmental microbiology.

[6]  H. Damman,et al.  Nitrogen Content of Food Plants and Vulnerability of Pieris Rapae to Natural Enemies , 1991 .

[7]  S. Duffey,et al.  Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly coloured Hemiptera and Coleoptera , 1972 .

[8]  M. Koziel,et al.  The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects , 1997, Applied and environmental microbiology.

[9]  R. K. Morrison,et al.  Parasitism of bollworm (Lepidoptera: Noctuidae) eggs on nectaried and nectariless cotton , 1987 .

[10]  R. Denno,et al.  THE SLOW‐GROWTH–HIGH‐MORTALITY HYPOTHESIS: A TEST USING THE CABBAGE BUTTERFLY , 1997 .

[11]  J. Pleasants,et al.  Temporal and spatial overlap between monarch larvae and corn pollen , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  van J.C. Lenteren,et al.  Biological control in tritrophic system approach. , 1990 .

[13]  M. T. Johnson,et al.  Interaction of genetically engineered host plant resistance and natural enemies of Heliothis viresce , 1992 .

[14]  A. Hilbeck,et al.  Influence of transgenic Bacillus thuringiensis corn-fed prey on prey preference of immature Chrysoperla carnea (Neuroptera: Chrysopidae) , 2001 .

[15]  W. Lewis,et al.  Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps , 1990, Science.

[16]  A. Hilbeck,et al.  Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae) , 1998 .

[17]  W. J. Lewis,et al.  Extrafloral Nectar, Honeydew, and Sucrose Effects on Searching Behavior and Efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in Cotton , 1997 .

[18]  Charles Vincent,et al.  Bacteriological Insecticide M-One Effects on Predation Efficiency and Mortality of Adult Coleomegilla maculata lengi (Coleoptera: Coccinellidae) , 1994 .

[19]  H. Chiang,et al.  Integrated control prospects of major cabbage insect pests in Minnesota - based on the faunistic, host varietal, and trophic relationships. , 1973 .

[20]  G. Kennedy,et al.  Field cage performance of two tachinid parasitoids of the tomato fruitworm on insect resistant and susceptible tomato lines , 1993 .

[21]  M. Montagu,et al.  Transgenic plants protected from insect attack , 1987, Nature.

[22]  Effect of an entomopathogen on adaptation of Heliothis virescens populations to transgenic host plants , 1997 .

[23]  L. Crossland,et al.  Field Performance of Elite Transgenic Maize Plants Expressing an Insecticidal Protein Derived from Bacillus thuringiensis , 1993, Bio/Technology.

[24]  J. Losey,et al.  Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Niemeyer,et al.  DIMBOA Glucoside, a Wheat Chemical Defense, Affects Host Acceptance and Suitability of Sitobion avenae to the Cereal Aphid Parasitoid Aphidius rhopalosiphi , 1998, Journal of Chemical Ecology.

[26]  A. Hilbeck,et al.  Prey‐mediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea , 1999 .

[27]  W. J. Lewis,et al.  Semiochemicals, their role in pest control , 1981 .

[28]  G. Poppy,et al.  Interactions between insect tolerant genetically modified plants and natural enemies , 1999 .

[29]  G. Kennedy,et al.  Influence of life history differences of two tachinid parasitoids ofHelicoverpa zea (Boddie) (Lepidoptera: Noctuidae) on their interactions with glandular trichome/methyl ketone-based insect resistance in tomato , 1992, Journal of Chemical Ecology.

[30]  C. R. Merritt The commercialisation of transgenic crops : the Bt experience , 1998 .

[31]  M. Sabelis,et al.  Review Behaviour and indirect interactions in food webs of plant-inhabiting arthropods , 1998, Experimental & Applied Acarology.

[32]  F. L. WATERHOUSE,et al.  Insect Ecology , 1967, Nature.

[33]  B. Croft,et al.  The effects of microbial pesticides on non-target, beneficial arthropods , 1986 .

[34]  H. Godfray,et al.  Parasitoids: Behavioral and Evolutionary Ecology , 1993 .

[35]  N. Crickmore,et al.  Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[36]  F. G. Holdaway,et al.  A Relationship of the Plant to Parasitism of European Corn Borer by the Tachinid Parasite Lydella grisescens , 1966 .

[37]  H. D. Burges,et al.  Persistence of Bacillus thuringiensis parasporal crystal insecticidal activity in soil , 1984 .

[38]  S. C. Peterson,et al.  DEFENSIVE REGURGITATION OF ALLELOCHEMICALS DERIVED FROM HOST CYANOGENESIS BY EASTERN TENT CATERPILLARS , 1987 .

[39]  M. Coll,et al.  Mortality of european corn borer larvae by natural enemies in different corn microhabitats , 1992 .

[40]  S. Gill,et al.  Bacillus thuringiensis endotoxins: action on the insect midgut , 1996 .

[41]  E. Simms,et al.  Effects of plant variation on herbivore-natural enemy interactions. , 1992 .

[42]  M. Berenbaum,et al.  Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Schultz,et al.  Induced plant defenses breached? Phytochemical induction protects an herbivore from disease , 1993, Oecologia.

[44]  Y. Shai,et al.  The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an "umbrella-like" structure of the pore. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Daloze,et al.  Chemical defence in chrysomelid eggs and neonate larvae , 1986 .

[46]  J. C. Lenteren,et al.  The parasite‐host relationship between Encarsia formosa (Hym., Aphelinidae) and Trialeurodes vaporariorum (Hom., Aleyrodidae) XXVI. Leaf hairs reduce the capacity of Encarsia to control greenhouse whitefly on cucumber , 1995 .

[47]  G. Stotzky,et al.  Insecticidal activity and biodegradation of the toxin from bacillus thuringiensis subsp. kurstaki bound to humic acids from soil , 1998 .

[48]  D. Schuster,et al.  Preference of Lysiphlebus testaceipes for Greenbug Resistant and Susceptible Small Grain Species , 1975 .

[49]  M. Coll,et al.  Microhabitat and Resource Selection of the European Corn Borer (Lepidoptera: Pyralidae) and Its Natural Enemies in Maryland Field Corn , 1991 .

[50]  M. Sabelis,et al.  How Plants Obtain Predatory Mites as Bodyguards , 1987 .

[51]  L. Malone,et al.  Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.) , 2001 .

[52]  P. Gross,et al.  Influence of dietary nicotine on the fall armyworm, Spodoptera frugiperda and its parasitoid, the ichneumonid wasp Hyposoter annulipes , 1988 .

[53]  B. Campbell,et al.  Tomatine and Parasitic Wasps: Potential Incompatibility of Plant Antibiosis with Biological Control , 1979, Science.

[54]  M. T. Johnson,et al.  Effects of natural enemies on relative fitness of Heliothis virescens genotypes adapted and not adapted to resistant host plants , 1997 .

[55]  J. Trumble,et al.  Comparative Toxicity of Spores and Crystals from the NRD-12 and HD-1 Strains of Bacillus thuringiensis suhsp. kurstaki to Neonate Beet Armyworm (Lepidoptera: Noctuidae) , 1989 .

[56]  F. Gould,et al.  Impact of intraplot mixtures of toxic and nontoxic plants on population dynamics of diamondback moth (Lepidoptera: Plutellidae) and its natural enemies , 1997 .

[57]  L. Calamai,et al.  Adsorption and binding of the insecticidal proteins from Bacillus thuringiensis subsp. kurstaki and subsp. tenebrionis on clay minerals , 1994 .

[58]  M. T. Johnson Interaction of Resistant Plants and Wasp Parasitoids of Tobacco Budworm (Lepidoptera: Noctuidae) , 1997 .

[59]  J. Obrycki,et al.  Predator and Parasitoid Interaction with Aphid-Resistant Potatoes to Reduce Aphid Densities: A Two-Year Field Study , 1983 .

[60]  W. Lewis,et al.  A total system approach to sustainable pest management. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[61]  G. Khush,et al.  Host plant resistance to insects. , 1995 .

[62]  A. Shelton,et al.  ARTHROPOD PREDATORS IN CABBAGE (CRUCIFERAE) AND THEIR POTENTIAL AS NATURALLY OCCURRING BIOLOGICAL CONTROL AGENTS FOR PIERIS RAPAE (LEPIDOPTERA: PIERIDAE) , 2000, The Canadian Entomologist.

[63]  D. Boethel,et al.  Interactions of Plant Resistance and Parasitoids and Predators of Insects , 1986 .

[64]  M. J. Lukefahr Insect resistant cotton , 1978 .

[65]  Brian A. Croft,et al.  Arthropod biological control agents and pesticides , 1990 .

[66]  M. Dicke Direct and indirect effects of plants on performance of beneficial organisms , 1999 .

[67]  M. F. Schuster,et al.  Rhodesgrass Scale Resistance Studies in Rhodesgrass , 1973 .

[68]  G. Poppy,et al.  Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. , 1999, Trends in biotechnology.

[69]  W. Stiekema,et al.  Domain III of the Bacillus thuringiensis delta‐endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N , 1999, Molecular microbiology.

[70]  G. Kennedy,et al.  Interaction of Manduca sexta resistance in tomato with insect predators of Helicoverpa zea , 1993 .

[71]  N. Stamp,et al.  Prey species and prey diet affect growth of invertebrate predators , 1998 .

[72]  P. Barbosa Natural enemies and herbivore-plant interactions:influence of plant allelochemicals and host specificity , 1988 .

[73]  J. Vandenberg Safety of Four Entomopathogens for Caged Adult Honey Bees (Hymenoptera: Apidae) , 1990 .

[74]  Bruce A. McPheron,et al.  Interactions Among Three Trophic Levels: Influence of Plants on Interactions Between Insect Herbivores and Natural Enemies , 1980 .

[75]  S. Bogya Spiders (Araneae) as polyphagous natural enemies in orchards. , 1999 .

[76]  S. Grimwade Recombinant DNA , 1977, Nature.

[77]  A. Hilbeck,et al.  Tritrophic Interactions of Transgenic Bacillus thuringiensis Corn, Anaphothrips obscurus (Thysanoptera: Thripidae), and the Predator Orius majusculus (Heteroptera: Anthocoridae) , 2000 .

[78]  N. Mills,et al.  Seasonal Activity of Carabids (Coleoptera: Carabidae) Affected by Microbial and Oil Insecticides in an Apple Orchard in California , 1995 .

[79]  D. Orr,et al.  Influence of plant antibiosis through four trophic levels , 1986, Oecologia.

[80]  W. J. Lewis,et al.  Use of learned odours by a parasitic wasp in accordance with host and food needs , 1990, Nature.

[81]  J. M. Scriber,et al.  Toxicity of Bacillus thuringiensis var. kurstaki to three nontarget Lepidoptera in field studies , 1995 .

[82]  Smita S. Patel,et al.  Irreversible Binding Kinetics of Bacillus thuringiensis CryIA δ-Endotoxins to Gypsy Moth Brush Border Membrane Vesicles Is Directly Correlated to Toxicity (*) , 1995, The Journal of Biological Chemistry.

[83]  J. Jenkins,et al.  Bivalent Sequential Binding Model of a Bacillus thuringiensis Toxin to Gypsy Moth Aminopeptidase N Receptor* , 2000, The Journal of Biological Chemistry.

[84]  S. Larsson,et al.  Slow larval growth on a suboptimal willow results in high predation mortality in the leaf beetle Galerucella lineola , 1995, Oecologia.

[85]  C. Palm,et al.  Persistence in soil of transgenic plant produced Bacillus thuringlensis var. kurstaki δ-endotoxin , 1996 .

[86]  DONOVAN E. Johnson,et al.  Contribution of Bacillus thuringiensis Spores to Toxicity of Purified Cry Proteins Towards Indianmeal Moth Larvae , 1996, Current Microbiology.

[87]  M. D. Pathak,et al.  Techniques for Evaluating Insect Resistance in Crop Plants , 1994 .

[88]  M. Rice,et al.  Antibiosis Effect of Sorghum on the Convergent Lady Beetle (Coleoptera: Coccinellidae), a Third-Trophic Level Predator of the Greenbug (Homoptera: Aphididae) , 1989 .

[89]  G. Poppy,et al.  Parasitoid behaviour and Bt plants , 1999, Nature.

[90]  P. Barbosa,et al.  Effect of a seed-mix deployment of Cry3A-transgenic and nontransgenic potato on the abundance of Lebia grandis (Coleoptera: Carabidae) and Coleomegilla maculata (Coleoptera: Coccinellidae) , 1998 .

[91]  J. Funderburk,et al.  PLANT RESISTANCE AND CULTURAL PRACTICE INTERACTIONS WITH BIOLOGICAL CONTROL , 1985 .

[92]  K. Tennessen,et al.  Effects of repeated applications of Bacillus thuringiensis israelensis on the mosquito predator Erythemis simplicicollis (Odonata: Libellulidae) from hatching to final instar , 1996 .

[93]  H. Tapp,et al.  Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil , 1998 .

[94]  Fred Gould,et al.  Potential and problems with high‐dose strategies for pesticidal engineered crops , 1994 .

[95]  Jamie Goode,et al.  Insect-plant interactions and induced plant defence , 1999 .

[96]  P. Rossignol,et al.  Biological Parameters of Convergent Lady Beetle (Coleoptera: Coccinellidae) Feeding on Aphids (Homoptera: Aphididae) on Transgenic Potato , 1996 .

[97]  F. Bigler,et al.  Uptake of Bt‐toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea , 2002 .

[98]  J. Losey,et al.  Transgenic pollen harms monarch larvae , 1999, Nature.

[99]  R. Metcalf,et al.  Cucurbitacins : Plant-derived defense compounds for diabroticites (Coleoptera: Chrysomelidae). , 1985, Journal of chemical ecology.

[100]  Louise E. M. Vet,et al.  Plant-carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore , 1999 .

[101]  Marcel Dicke,et al.  Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) , 1999 .

[102]  Deepak Saxena,et al.  Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil , 2001 .

[103]  N. Stamp,et al.  Variable quantities of toxic diet cause different degrees of compensatory and inhibitory responses by juvenile praying mantids , 1990 .

[104]  M. Sabelis,et al.  HOW PLANTS BENEFIT FROM PROVIDING FOOD TO PREDATORS EVEN WHEN IT IS ALSO EDIBLE TO HERBIVORES , 2002 .

[105]  C. F. Reichelderfer,et al.  Three trophic level interactions: allelochemicals, Manduca sexta (L.) , and Bacillus thuringiensis var. kurstaki Berliner , 1988 .

[106]  M. Hoy,et al.  Relative toxicity of Bacillus thuringiensis var. tenebrionis to the two‐spotted spider mite (Tetranychus urticae Koch) and its predator Metaseiulus occidentalis (Nesbitt) (Acari, Tetranychidae and Phytoseiidae) , 1991 .

[107]  S. Larsson,et al.  Pine sawfly defence and variation in host plant resin acids: a trade‐off with growth , 1991 .

[108]  R. Fuchs,et al.  Modification of the coding sequence enhances plant expression of insect control protein genes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[109]  N. Stamp,et al.  Response of an insect predator to prey fed multiple allelochemicals under representative thermal regimes , 1997 .

[110]  A. Navon,et al.  Interactions Among Helicoverpa armigera (Lepidoptera: Noctuidae), Its Larval Endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae), and Bacillus thuringiensis , 1997 .

[111]  D. Saxena,et al.  Transgenic plants: Insecticidal toxin in root exudates from Bt corn , 1999, Nature.

[112]  F Bigler,et al.  Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab , 2001, Molecular ecology.

[113]  S. Y. Young,et al.  Development of Cotesia marginiventris (Hymenoptera: Braconidae) in Tobacco Budworm (Lepidoptera: Noctuidae) Larvae Treated with Bacillus thuringiensis and Thiodicarb , 1997 .

[114]  A. Emery,et al.  Recombinant DNA, 2nd edn. J. D. Watson, M. Gilman, J. Witkowski and M. Zoller. Published 1992 by Freeman, Oxford. ISBN 0 7167 1994 0 (hardback), 0 7167 2282 6 (paperback), 626 pp. Price ♠35.95 (hardback), ♠21.95 (paperback) , 1992, Neuromuscular Disorders.

[115]  J. R. Bradley,et al.  The Influence of Host Plants on Parasitism of Eggs of the Tobacco Hornworm , 1968 .

[116]  Paul DeBach,et al.  Biological Control by Natural Enemies. , 1975 .

[117]  G. Kennedy,et al.  Field evaluation of insect resistance in a wild tomato and its effects on insect parasitoids , 1994 .

[118]  D. Boucias,et al.  Principles of Insect Pathology , 1998, Springer US.

[119]  J. E. Ream,et al.  Soil inactivation of the Bacillus thuringiensis subsp. kurstaki CryIIA insecticidal protein within transgenic cotton tissue : Laboratory microcosm and field studies , 1997 .

[120]  D. Landis,et al.  Oviposition of European Corn Borer (Lepidoptera: Pyralidae) and Impact of Natural Enemy Populations in Transgenic Versus Isogenic Corn , 1997 .

[121]  S. Inagaki,et al.  Enhancement of δ-Endotoxin Activity by Toxin-Free Spore of Bacillus thuringiensis against the Diamondback Moth, Plutella xylostella , 1994 .

[122]  K. Hagen Ecosystem analysis : plant cultivars (HPR), entomophagous species and food supplements , 1986 .

[123]  R. D. de Maagd,et al.  How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. , 2001, Trends in genetics : TIG.

[124]  B. Philogéne,et al.  Biological Effects and Toxicokinetics of DIM BOA in Diadegma terebrans (Hymenoptera: Ichneumonidae), an Endoparasitoid of Ostrinia nubilalis (Lepidoptera: Pyralidae) , 1990 .

[125]  F. Gould,et al.  Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[126]  C. F. Wilkinson,et al.  Detoxication Enzymes in the Guts of Caterpillars: An Evolutionary Answer to Plant Defenses? , 1971, Science.

[127]  W. H. Mcgaughey,et al.  Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. , 1990, Science.

[128]  G. Poppy,et al.  Population‐scale laboratory studies of the effect of transgenic plants on nontarget insects , 2001, Molecular ecology.

[129]  D. Andow Characterization of predation on egg masses of Ostrinia nubilalis (Lepidoptera : Pyralidae) , 1990 .

[130]  G. Poppy Tritrophic interactions: improving ecological understanding and biological control? , 1997 .

[131]  J. Lawton,et al.  INSECTS ON PLANTS. COMMUNITY PATTERNS AND MECHANISMS. , 1987 .

[132]  S. Riechert,et al.  Spiders as Biological Control Agents , 1984 .

[133]  Richard L. Hellmich,et al.  Corn pollen deposition on milkweeds in and near cornfields , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[134]  G. Ramsay,et al.  Honeybees as vectors of GM oilseed rape pollen , 1999 .

[135]  C. Cloutier,et al.  Synergism Between Natural Enemies and Biopesticides: a Test Case Using the Stinkbug Perillus bioculatus (Hemiptera: Pentatomidae) and Bacillus thuringiensis tenebrionis Against Colorado Potato Beetle (Coleoptera: Chrysomelidae) , 1998 .

[136]  S. Jansens,et al.  Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[137]  L. Holden,et al.  Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstaki CryIA(b) protein in corn tissue , 1996 .

[138]  B. Campbell,et al.  Alleviation of α-tomatine-induced toxicity to the parasitoid,Hyposoter exiguae, by phytosterols in the diet of the host,Heliothis zea , 1981, Journal of Chemical Ecology.

[139]  David Rosen,et al.  Biological control by natural enemies , 1974 .

[140]  Michael T. Johnson,et al.  Effects of natural enemies on the rate of herbivore adaptation to resistant host plants , 1991 .

[141]  P. Price,et al.  Seasonal development of soybean arthropod communities in east central Illinois , 1978 .

[142]  D. Heckel,et al.  Identification of a Gene Associated with Bt Resistance in Heliothis virescens , 2001, Science.

[143]  J. Daniel Hare,et al.  Interactions amongHeliothis virescens larvae, cotton condensed tannin and the CryIA(c) δ-endotoxin ofBacillus thuringiensis , 1993, Journal of Chemical Ecology.

[144]  B. Hawkins Pattern and Process in Host-Parasitoid Interactions , 1994 .

[145]  Travis R. Glare,et al.  Bacillus Thuringiensis: Biology, Ecology and Safety , 2000 .

[146]  M. Rice,et al.  Preimaginal Development, Survival, and Field Abundance of Insect Predators on Transgenic Bacillus thuringiensis Corn , 1997 .

[147]  H. Tapp,et al.  Soil Clays . tenebrionis Adsorbed and Bound on Pure and thuringiensis subspecies kurstaki and Insecticidal Activity of the Toxins from Bacillus , 1995 .

[148]  P. Price Evolutionary theory of host and parasitoid interactions , 1991 .

[149]  T. A. Armstrong,et al.  Insect Resistant Cotton Plants , 1990, Bio/Technology.

[150]  J. Schwartz,et al.  Helix 4 of the Bacillus thuringiensis Cry1Aa Toxin Lines the Lumen of the Ion Channel* , 1999, The Journal of Biological Chemistry.

[151]  Richard L. Hellmich,et al.  Impact of Bt corn pollen on monarch butterfly populations: A risk assessment , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[152]  R. Hellmich,et al.  Monarch larvae sensitivity to Bacillus thuringiensis- purified proteins and pollen , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[153]  D. Daloze,et al.  Cardiac glycosides in the defensive secretion of chrysomelid beetles: evidence for their production by the insects. , 1977, Science.

[154]  Maurice W. Sabelis,et al.  Spider mites: their biology, natural enemies and control: vol. 1A , 1985 .

[155]  D. Stalker,et al.  Amplification of a Chimeric Bacillus Gene in Chloroplasts Leads to an Extraordinary Level of an Insecticidal Protein in Tobacco , 1995, Bio/Technology.

[156]  天野 洋 Spider Mites Their Biology, Natural Enemies and Control World Crop Pests Vols. 1A & 1B, : W. HELLE and M.W. SABELIS eds., (1985), Elsevier Science Publishers, Amsterdam, Vol. 1A : 406,1B : 458 pp. , 1987 .

[157]  M. Dicke,et al.  Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation , 2000, Oecologia.

[158]  D. Dean,et al.  Synergism between CryIA insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae , 1995 .

[159]  N. Stamp,et al.  Combined effects of allelochemicals, prey availability, and supplemental plant material on growth of a generalist insect predator , 1998 .

[160]  J. Jenkins Transgenic Plants Expressing Toxins from Bacillus thuringiensis , 1999 .

[161]  P. Barbosa,et al.  Impact of Cry3A-Intoxicated Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and Pollen on Consumption, Development, and Fecundity of Coleomegilla maculata (Coleoptera: Coccinellidae) , 1998 .

[162]  G. Kennedy,et al.  Effect of Parasitoids on Lepidopterous Pests in Insecticide-Treated and Untreated Tomatoes in Western North Carolina , 1991 .

[163]  G. Stotzky,et al.  Microbial Utilization of Free and Clay-Bound Insecticidal Toxins from Bacillus thuringiensis and Their Retention of Insecticidal Activity after Incubation with Microbes , 1997, Applied and environmental microbiology.

[164]  D. Schuster Life-stage specific toxicity of insecticides to parasitoids of Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) , 1994 .