Partial Variance of Increments Method in Solar Wind Observations and Plasma Simulations

The method called “PVI” (Partial Variance of Increments) has been increasingly used in analysis of spacecraft and numerical simulation data since its inception in 2008. The purpose of the method is to study the kinematics and formation of coherent structures in space plasmas, a topic that has gained considerable attention, leading the development of identification methods, observations, and associated theoretical research based on numerical simulations.This review paper will summarize key features of the method and provide a synopsis of the main results obtained by various groups using the method. This will enable new users or those considering methods of this type to find details and background collected in one place.

[1]  P. Hellinger,et al.  Parallel and oblique proton fire hose instabilities in the presence of alpha/proton drift : Hybrid simulations , 2006 .

[2]  L. Davis,et al.  Large-Amplitude Alfvn Waves in the Interplanetary Medium' , 1971 .

[3]  T. Hada,et al.  Phase coherence of MHD waves in the solar wind , 2003 .

[4]  J. Borovsky,et al.  NO EVIDENCE FOR HEATING OF THE SOLAR WIND AT STRONG CURRENT SHEETS , 2011 .

[5]  S. Perri,et al.  IDENTIFICATION OF HIGH SHEARS AND COMPRESSIVE DISCONTINUITIES IN THE INNER HELIOSPHERE , 2014 .

[6]  L. Franci,et al.  Two-dimensional Hybrid Simulations of Kinetic Plasma Turbulence: Current and Vorticity vs Proton Temperature , 2016, 1604.03040.

[7]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[8]  E. Quataert,et al.  Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. , 2009, Physical review letters.

[9]  H. Karimabadi,et al.  Intermittent dissipation at kinetic scales in collisionless plasma turbulence. , 2012, Physical review letters.

[10]  W. Matthaeus,et al.  ASSOCIATION OF SUPRATHERMAL PARTICLES WITH COHERENT STRUCTURES AND SHOCKS , 2013 .

[11]  W. Matthaeus,et al.  EMPIRICAL CONSTRAINTS ON PROTON AND ELECTRON HEATING IN THE FAST SOLAR WIND , 2009, 0907.2650.

[12]  L. Sorriso-Valvo,et al.  Magnetically dominated structures as an important component of the solar wind turbulence , 2007 .

[13]  P. Veltri,et al.  Local kinetic effects in two-dimensional plasma turbulence. , 2012, Physical review letters.

[14]  P. Dmitruk,et al.  Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence , 2010 .

[15]  Y. Dubief,et al.  On coherent-vortex identification in turbulence , 2000 .

[16]  W. Matthaeus,et al.  Local modulation and trapping of energetic particles by coherent magnetic structures , 2016 .

[17]  V. Carbone,et al.  Competition among nonlinear effects in tearing instability saturation , 1992 .

[18]  M. Maksimović,et al.  COMPRESSIVE COHERENT STRUCTURES AT ION SCALES IN THE SLOW SOLAR WIND , 2016, 1604.07577.

[19]  P. Dmitruk,et al.  How to identify reconnecting current sheets in incompressible Hall MHD turbulence , 2013 .

[20]  W. Matthaeus,et al.  Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma , 2007, 0801.0107.

[21]  P. Dmitruk,et al.  Depression of nonlinearity in decaying isotropic MHD turbulence. , 2008, Physical review letters.

[22]  L. Burlaga,et al.  Tsallis distributions of the large-scale magnetic field strength fluctuations in the solar wind from 7 to 87 AU , 2005 .

[23]  Vincenzo Carbone,et al.  Intermittency in the solar wind turbulence through probability distribution functions of fluctuations , 1999, physics/9903043.

[24]  J. C. Kasper,et al.  Electron and proton heating by solar wind turbulence , 2009, 0907.4074.

[25]  W. Matthaeus,et al.  Kinetic signatures and intermittent turbulence in the solar wind plasma. , 2012, Physical review letters.

[26]  J. Gosling,et al.  MAGNETIC RECONNECTION IN THE SOLAR WIND AT CURRENT SHEETS ASSOCIATED WITH EXTREMELY SMALL FIELD SHEAR ANGLES , 2012 .

[27]  Michael R. Brown,et al.  Laboratory sources of turbulent plasma: a unique MHD plasma wind tunnel , 2014 .

[28]  F. Pegoraro,et al.  Pressure anisotropy and small spatial scales induced by velocity shear. , 2015, Physical review. E.

[29]  V. Carbone,et al.  Identifying intermittency events in the solar wind , 2001 .

[30]  F. Sahraoui,et al.  Detection of small-scale structures in the dissipation regime of solar-wind turbulence. , 2012, Physical review letters.

[31]  J. Gosling Magnetic Reconnection in the Solar Wind , 2012 .

[32]  M. Romé,et al.  Low-power radio-frequency excitation as a plasma source in a Penning–Malmberg trap: a systematic study , 2015, Journal of Plasma Physics.

[33]  A. Vaivads,et al.  Dissipation in turbulent plasma due to reconnection in thin current sheets. , 2007, Physical review letters.

[34]  P. Canu,et al.  THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA , 2015 .

[35]  C. Owen,et al.  In situ evidence of magnetic reconnection in turbulent plasma , 2007 .

[36]  B. Tsurutani,et al.  Interplanetary discontinuities: Temporal variations and the radial gradient from 1 to 8.5 AU , 1979 .

[37]  Pierluigi Veltri,et al.  Scaling laws and intermittent structures in solar wind MHD turbulence , 2008 .

[38]  V. Carbone,et al.  Coherent structure formation and magnetic field line reconnection in magnetohydrodynamic turbulence , 1990 .

[39]  S. Servidio,et al.  THE COMPLEX STRUCTURE OF MAGNETIC FIELD DISCONTINUITIES IN THE TURBULENT SOLAR WIND , 2015, 1511.03084.

[40]  Jiansen He,et al.  THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE , 2015, 1504.05348.

[41]  S. Boldyrev,et al.  Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind. , 2012, Physical review letters.

[42]  W. Matthaeus,et al.  TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA , 2015 .

[43]  W. Matthaeus,et al.  DIRECTIONAL ALIGNMENT AND NON-GAUSSIAN STATISTICS IN SOLAR WIND TURBULENCE , 2011 .

[44]  P. Dmitruk,et al.  EVIDENCE FOR NONLINEAR DEVELOPMENT OF MAGNETOHYDRODYNAMIC SCALE INTERMITTENCY IN THE INNER HELIOSPHERE , 2012 .

[45]  T. Horbury,et al.  Solar Wind Turbulence and the Role of Ion Instabilities , 2013, 1306.5336.

[46]  W. Matthaeus,et al.  A kinetic model of plasma turbulence , 2014, Journal of Plasma Physics.

[47]  P. Dmitruk,et al.  STATISTICAL ANALYSIS OF DISCONTINUITIES IN SOLAR WIND ACE DATA AND COMPARISON WITH INTERMITTENT MHD TURBULENCE , 2009 .

[48]  A. Vecchio,et al.  Phase-synchronization, energy cascade, and intermittency in solar-wind turbulence. , 2012, Physical review letters.

[49]  D. Newman,et al.  Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets , 2013 .

[50]  G. Howes,et al.  CURRENT SHEETS AND COLLISIONLESS DAMPING IN KINETIC PLASMA TURBULENCE , 2013, 1304.2958.

[51]  A. Hussain,et al.  Coherent structures and turbulence , 1986, Journal of Fluid Mechanics.

[52]  J. W. Sari,et al.  Power spectra of the interplanetary magnetic field , 1969 .

[53]  Pelz,et al.  Velocity-vorticity patterns in turbulent flow. , 1985, Physical review letters.

[54]  P. Coleman Turbulence, viscosity, and dissipation in the solar-wind plasma , 1968 .

[55]  P. Veltri MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures , 1999 .

[56]  J. Giacalone,et al.  Progress in the Study of Interplanetary Discontinuities , 2010 .

[57]  Giampiero Naletto,et al.  UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona , 1998 .

[58]  Petr Hellinger,et al.  Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU , 2007 .

[59]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[60]  L. Burlaga,et al.  Macro- and micro-structure of the interplanetary magnetic field , 1968 .

[61]  Jiansen He,et al.  ON INTERMITTENT TURBULENCE HEATING OF THE SOLAR WIND: DIFFERENCES BETWEEN TANGENTIAL AND ROTATIONAL DISCONTINUITIES , 2013 .

[62]  D. Mccomas,et al.  Understanding Kappa Distributions: A Toolbox for Space Science and Astrophysics , 2013 .

[63]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[64]  H. Karimabadi,et al.  Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence. , 2014, Physical review letters.

[65]  C. Russell,et al.  Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath , 2016, 1706.04053.

[66]  Marc Davis,et al.  THE DEPENDENCE OF MAGNETIC RECONNECTION ON PLASMA β AND MAGNETIC SHEAR: EVIDENCE FROM SOLAR WIND OBSERVATIONS , 2010 .

[67]  P. Dmitruk,et al.  Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. , 2009, Physical review letters.

[68]  James Drake,et al.  Three‐dimensional particle simulations of collisionless magnetic reconnection , 2001 .

[69]  E. Novikov Intermittency and scale similarity in the structure of a turbulent plow: PMM vol. 35, n≗2, 1971, pp. 266–277 , 1971 .

[70]  C. Russell,et al.  Electron Heating at Kinetic Scales in Magnetosheath Turbulence , 2017 .

[71]  W. Matthaeus,et al.  SELECTIVE DECAY HYPOTHESIS AT HIGH MECHANICAL AND MAGNETIC REYNOLDS NUMBERS * , 1980 .

[72]  P. Dmitruk,et al.  Waiting-time distributions of magnetic discontinuities: clustering or Poisson process? , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  W. Matthaeus,et al.  Inhomogeneous kinetic effects related to intermittent magnetic discontinuities. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  W. Matthaeus,et al.  High-resolution Statistics of Solar Wind Turbulence at Kinetic Scales Using the Magnetospheric Multiscale Mission , 2017 .

[75]  Vincenzo Carbone,et al.  Intermittency in MHD turbulence and coronal nanoflares modelling , 2005 .

[76]  H. Karimabadi,et al.  INTERMITTENT HEATING IN SOLAR WIND AND KINETIC SIMULATIONS , 2013 .

[77]  P. Dmitruk,et al.  Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence , 2011 .

[78]  P. Dmitruk,et al.  Intermittent MHD structures and classical discontinuities , 2008 .

[79]  J B Taylor,et al.  Relaxation and magnetic reconnection in plasmas , 1986 .

[80]  L. Sorriso-Valvo,et al.  Two-fluid numerical simulations of turbulence inside Kelvin-Helmholtz vortices: Intermittency and reconnecting current sheets , 2015 .

[81]  Radial evolution of solar wind intermittency in the inner heliosphere , 2003, astro-ph/0303578.

[82]  A. Lazarus,et al.  Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation. , 2008, Physical review letters.

[83]  W. Matthaeus,et al.  Intermittency and local heating in the solar wind. , 2011, Physical review letters.

[84]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[85]  W. Matthaeus,et al.  EFFECT OF COHERENT STRUCTURES ON ENERGETIC PARTICLE INTENSITY IN THE SOLAR WIND AT 1 AU , 2014 .

[86]  W. Matthaeus,et al.  PROPINQUITY OF CURRENT AND VORTEX STRUCTURES: EFFECTS ON COLLISIONLESS PLASMA HEATING , 2016, 1610.02912.

[87]  H. Karimabadi,et al.  Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas , 2013 .

[88]  W. Matthaeus,et al.  Energy transfer, pressure tensor and heating of kinetic plasma , 2017, 1705.02054.

[89]  R. Rogallo,et al.  Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions , 2003 .

[90]  W. Matthaeus,et al.  Turbulent magnetic reconnection , 1986 .

[91]  F. Califano,et al.  PROTON KINETIC EFFECTS IN VLASOV AND SOLAR WIND TURBULENCE , 2013, 1306.6455.

[92]  W. Matthaeus,et al.  Magnetic Reconnection and Intermittent Turbulence in the Solar Wind , 2014, 1403.4590.

[93]  W. Matthaeus,et al.  EVIDENCE FOR INHOMOGENEOUS HEATING IN THE SOLAR WIND , 2010 .