Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules
暂无分享,去创建一个
[1] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[2] L. Monika Moskal,et al. Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .
[3] F. M. Danson,et al. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .
[4] R. Brereton,et al. Support vector machines for classification and regression. , 2010, The Analyst.
[5] Emilio Chuvieco,et al. Earth observation of wildland fires in Mediterranean ecosystems , 2009 .
[6] Emilio Chuvieco,et al. Estimation of Fuel Conditions for Fire Danger Assessment , 2009 .
[7] Andrew T. Hudak,et al. Discrete return lidar-based prediction of leaf area index in two conifer forests , 2008 .
[8] Lara A. Arroyo,et al. Fire models and methods to map fuel types: The role of remote sensing , 2008 .
[9] Benjamin Koetz,et al. Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data , 2008 .
[10] Farid Melgani,et al. Classification of Hyperspectral Remote Sensing Images Using Gaussian Processes , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.
[11] S. Popescu,et al. A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .
[12] Sukumar Bandopadhyay,et al. An Objective Analysis of Support Vector Machine Based Classification for Remote Sensing , 2008 .
[13] Sorin C. Popescu,et al. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .
[14] David Riaño,et al. Ajuste planimétrico de datos LiDAR para la estimación de características dasométricas en el Parque Natural del Alto Tajo , 2008 .
[15] Chih-Jen Lin,et al. A Practical Guide to Support Vector Classication , 2008 .
[16] Jon Atli Benediktsson,et al. Fusion of Support Vector Machines for Classification of Multisensor Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.
[17] D. Donoghue,et al. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .
[18] Rosa Lasaponara,et al. Remotely sensed characterization of forest fuel types by using satellite ASTER data , 2007, Int. J. Appl. Earth Obs. Geoinformation.
[19] Jon Atli Benediktsson,et al. Fusion of support vector machines for classifying SAR and multispectral imagery from agricultural areas , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.
[20] S. Ustin,et al. Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging , 2007 .
[21] Rosa Lasaponara,et al. On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape , 2007 .
[22] Sean P. Healey,et al. Using object‐oriented classification and high‐resolution imagery to map fuel types in a Mediterranean region , 2006 .
[23] Ioannis Z. Gitas,et al. Fuel type mapping in Anopolis, Crete by employing QuickBird imagery and object-based classification , 2006 .
[24] Paul E. Gessler,et al. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling , 2005 .
[25] Craig A. Coburn,et al. SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain , 2005, IEEE Transactions on Geoscience and Remote Sensing.
[26] I. Burke,et al. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .
[27] S. Reutebuch,et al. Estimating forest canopy fuel parameters using LIDAR data , 2005 .
[28] S. Ustin,et al. Generation of crown bulk density for Pinus sylvestris L. from lidar , 2004 .
[29] Lorenzo Bruzzone,et al. Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[30] Giles M. Foody,et al. A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[31] E. Alvarado,et al. Linking vegetation patterns to potential smoke production and fire hazard , 2004 .
[32] E. Chuvieco. Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data , 2003 .
[33] S. Ustin,et al. Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .
[34] Nikos Koutsias,et al. Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS , 2003 .
[35] Emilio Chuvieco,et al. Fuel loads and fuel types , 2003 .
[36] D. Riaño,et al. Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems , 2002 .
[37] R. Keane,et al. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling , 2001 .
[38] Roger D. Ottmar,et al. Characterizing fuels in the 21st Century , 2001 .
[39] Kalliopi Radoglou,et al. Forests of the Mediterranean region : gaps in knowledge and research needs , 2000 .
[40] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[41] Russell G. Congalton,et al. Assessing the accuracy of remotely sensed data : principles and practices , 1998 .
[42] A. Gillespie,et al. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry , 1998 .
[43] E. Chuvieco,et al. Modeling forest fire danger from geographic information systems , 1998 .
[44] M. Finney. FARSITE : Fire Area Simulator : model development and evaluation , 1998 .
[45] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[46] E. Chuvieco,et al. Aplicación de imágenes Landsat-TM a la cartografía de modelos combustibles , 1995 .
[47] Jon Atli Benediktsson,et al. Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.
[48] Patricia L. Andrews,et al. Introduction To Wildland Fire , 1984 .
[49] R. Burgan,et al. BEHAVE : Fire Behavior Prediction and Fuel Modeling System -- FUEL Subsystem , 1984 .
[50] P. Teillet,et al. On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .
[51] T. Lin,et al. The Lambertian assumption and Landsat data. , 1980 .
[52] F. Albini. Estimating Wildfire Behavior and Effects , 1976 .