Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules

[1]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[2]  L. Monika Moskal,et al.  Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .

[3]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[4]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[5]  Emilio Chuvieco,et al.  Earth observation of wildland fires in Mediterranean ecosystems , 2009 .

[6]  Emilio Chuvieco,et al.  Estimation of Fuel Conditions for Fire Danger Assessment , 2009 .

[7]  Andrew T. Hudak,et al.  Discrete return lidar-based prediction of leaf area index in two conifer forests , 2008 .

[8]  Lara A. Arroyo,et al.  Fire models and methods to map fuel types: The role of remote sensing , 2008 .

[9]  Benjamin Koetz,et al.  Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data , 2008 .

[10]  Farid Melgani,et al.  Classification of Hyperspectral Remote Sensing Images Using Gaussian Processes , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[11]  S. Popescu,et al.  A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .

[12]  Sukumar Bandopadhyay,et al.  An Objective Analysis of Support Vector Machine Based Classification for Remote Sensing , 2008 .

[13]  Sorin C. Popescu,et al.  Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .

[14]  David Riaño,et al.  Ajuste planimétrico de datos LiDAR para la estimación de características dasométricas en el Parque Natural del Alto Tajo , 2008 .

[15]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[16]  Jon Atli Benediktsson,et al.  Fusion of Support Vector Machines for Classification of Multisensor Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[17]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[18]  Rosa Lasaponara,et al.  Remotely sensed characterization of forest fuel types by using satellite ASTER data , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[19]  Jon Atli Benediktsson,et al.  Fusion of support vector machines for classifying SAR and multispectral imagery from agricultural areas , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[20]  S. Ustin,et al.  Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging , 2007 .

[21]  Rosa Lasaponara,et al.  On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape , 2007 .

[22]  Sean P. Healey,et al.  Using object‐oriented classification and high‐resolution imagery to map fuel types in a Mediterranean region , 2006 .

[23]  Ioannis Z. Gitas,et al.  Fuel type mapping in Anopolis, Crete by employing QuickBird imagery and object-based classification , 2006 .

[24]  Paul E. Gessler,et al.  Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling , 2005 .

[25]  Craig A. Coburn,et al.  SCS+C: a modified Sun-canopy-sensor topographic correction in forested terrain , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[26]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[27]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[28]  S. Ustin,et al.  Generation of crown bulk density for Pinus sylvestris L. from lidar , 2004 .

[29]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[31]  E. Alvarado,et al.  Linking vegetation patterns to potential smoke production and fire hazard , 2004 .

[32]  E. Chuvieco Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data , 2003 .

[33]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[34]  Nikos Koutsias,et al.  Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS , 2003 .

[35]  Emilio Chuvieco,et al.  Fuel loads and fuel types , 2003 .

[36]  D. Riaño,et al.  Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems , 2002 .

[37]  R. Keane,et al.  Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling , 2001 .

[38]  Roger D. Ottmar,et al.  Characterizing fuels in the 21st Century , 2001 .

[39]  Kalliopi Radoglou,et al.  Forests of the Mediterranean region : gaps in knowledge and research needs , 2000 .

[40]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[41]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[42]  A. Gillespie,et al.  Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry , 1998 .

[43]  E. Chuvieco,et al.  Modeling forest fire danger from geographic information systems , 1998 .

[44]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[45]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[46]  E. Chuvieco,et al.  Aplicación de imágenes Landsat-TM a la cartografía de modelos combustibles , 1995 .

[47]  Jon Atli Benediktsson,et al.  Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[48]  Patricia L. Andrews,et al.  Introduction To Wildland Fire , 1984 .

[49]  R. Burgan,et al.  BEHAVE : Fire Behavior Prediction and Fuel Modeling System -- FUEL Subsystem , 1984 .

[50]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[51]  T. Lin,et al.  The Lambertian assumption and Landsat data. , 1980 .

[52]  F. Albini Estimating Wildfire Behavior and Effects , 1976 .