Guaranteed Termination in the Verification of Ltl Properties of Non-linear Robust Discrete Time Hybrid Systems

We present a novel approach to the automatic verification and falsification of LTL requirements of non-linear discrete-time hybrid systems. The verification tool uses an interval-based constraint solver for non-linear robust constraints to compute incrementally refined abstractions. Although the problem is in general undecidable, we prove termination of abstraction refinement based verification and falsification of such properties for the class of non-linear robust discrete-time hybrid systems. We argue, that—in industrial practice—safety critical control applications give rise to hybrid systems that are robust. We give first results on the application of this approach to a variant of an aircraft collision avoidance protocol.

[1]  William S. Levine,et al.  The Control Handbook , 2005 .

[2]  Martin Fränzle,et al.  Analysis of Hybrid Systems: An Ounce of Realism Can Save an Infinity of States , 1999, CSL.

[3]  Hardi Hungar,et al.  On the Verification of Cooperating Traffic Agents , 2003, FMCO.

[4]  P. S. Thiagarajan,et al.  The Discrete Time Behavior of Lazy Linear Hybrid Automata , 2005, HSCC.

[5]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[6]  Bernhard Josko,et al.  Adding Value to Automotive Models , 2004, ASWSD.

[7]  Eugene Asarin,et al.  The d/dt Tool for Verification of Hybrid Systems , 2002, CAV.

[8]  Stephan Merz,et al.  Model Checking , 2000 .

[9]  Stefan Ratschan,et al.  Quantified Constraints Under Perturbation , 2002, J. Symb. Comput..

[10]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[11]  Alberto Sangiovanni-Vincentelli,et al.  The Future Design Scenario and the Sea Initiative , 2004 .

[12]  Bruce H. Krogh,et al.  Formal verification of hybrid systems using CheckMate: a case study , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[13]  Martin Fränzle,et al.  What Will Be Eventually True of Polynomial Hybrid Automata? , 2001, TACS.

[14]  Anders Rantzer,et al.  Primal-dual tests for safety and reachability , 2005 .

[15]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[16]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[17]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[18]  Stefan Ratschan,et al.  Safety verification of hybrid systems by constraint propagation-based abstraction refinement , 2007, TECS.

[19]  Frank Stephan,et al.  Behavioural Approximations for Restricted Linear Differential Hybrid Automata , 2006, HSCC.

[20]  Paulo Tabuada,et al.  Model Checking LTL over Controllable Linear Systems Is Decidable , 2003, HSCC.

[21]  Hardi Hungar,et al.  Formal Verification of an Avionics Application using Abstraction and Symbolic Model Checking , 1999 .

[22]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[23]  Peter Jansen,et al.  Verification of Automotive Control Units , 1999, Correct System Design.

[24]  O. Stursberg,et al.  On the Generation of Timed Discrete Approximations for Continuous Systems , 2000 .

[25]  Mark R. Greenstreet,et al.  Hybrid Systems: Computation and Control , 2002, Lecture Notes in Computer Science.

[26]  Antoine Girard,et al.  Verification Using Simulation , 2006, HSCC.

[27]  Thomas A. Henzinger,et al.  Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods , 2000, HSCC.

[28]  Hardi Hungar,et al.  First-Order-CTL Model Checking , 1998, FSTTCS.

[29]  Ashish Tiwari,et al.  Hybrid Systems: Computation and Control , 2006 .

[30]  Joël Ouaknine,et al.  Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems , 2003, Int. J. Found. Comput. Sci..

[31]  Matthias Bretschneider,et al.  Model-based Safety Analysis of a Flap Control System , 2004 .

[32]  A. Neumaier Interval methods for systems of equations , 1990 .

[33]  B. Krogh,et al.  Computing polyhedral approximations to flow pipes for dynamic systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[34]  Stefan Ratschan,et al.  Safety Verification of Hybrid Systems by Constraint Propagation Based Abstraction Refinement , 2005, HSCC.