Activation of dopamine D(1)-like receptor causes phosphorylation of alpha(1)-subunit of Na(+),K(+)-ATPase in rat renal proximal tubules.

Dopamine causes inhibition of Na(+),K(+)-ATPase activity via activation of dopamine D(1)-like receptors. It is the phosphorylation of Serine(18) of the alpha(1)-subunit of Na(+),K(+)-ATPase which results in the inhibition of the enzyme activity; however, such a phosphorylation by dopamine D(1)-like receptor agonist has not been demonstrated in the proximal tubules. We show here by immunoprecipitation and detection with phosphoserine antibody that SKF 38393, a dopamine D(1)-like receptor agonist, causes phosphorylation of the alpha(1)-subunit of Na(+),K(+)-ATPase. The effect of (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride, SKF 38393, is blocked by R(+)-7-choro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-benzazepine hydrochloride, SCH 23390, a dopamine D(1)-like receptor antagonist, and staurosporin, a protein kinase C inhibitor. The phosphorylation is also increased by phorbol 12-13 dibutyrate ester. However, Rp-cAMP triethylamine, an inhibitor of protein kinase A, does not affect the SKF 38393-mediated phosphorylation of Na(+),K(+)-ATPase. Therefore, these results provide the evidence that dopamine D(1)-like receptor activation causes phosphorylation of the alpha(1)-subunit of Na(+),K(+)-ATPase in renal proximal tubules via protein kinase C pathway.