Symmetry and topology of hyperbolic Haldane models

Particles hopping on a two-dimensional hyperbolic lattice feature unconventional energy spectra and wave functions that provide a largely uncharted platform for topological phases of matter beyond the Euclidean paradigm. Using real-space topological markers as well as Chern numbers defined in the higher-dimensional momentum space of hyperbolic band theory, we construct and investigate hyperbolic Haldane models, which are generalizations of Haldane's honeycomb-lattice model to various hyperbolic lattices. We present a general framework to characterize point-group symmetries in hyperbolic tight-binding models, and use this framework to constrain the multiple first and second Chern numbers in momentum space. We observe several topological gaps characterized by first Chern numbers of value $1$ and $2$. The momentum-space Chern numbers respect the predicted symmetry constraints and agree with real-space topological markers, indicating a direct connection to observables such as the number of chiral edge modes. With our large repertoire of models, we further demonstrate that the topology of hyperbolic Haldane models is trivialized for lattices with strong negative curvature.

[1]  J. Maciejko,et al.  Non-Abelian Hyperbolic Band Theory from Supercells. , 2023, Physical review letters.

[2]  J. Vidal,et al.  Density of states of tight-binding models in the hyperbolic plane , 2023, Physical Review B.

[3]  E. Prodan,et al.  Converging Periodic Boundary Conditions and Detection of Topological Gaps on Regular Hyperbolic Tessellations. , 2023, Physical review letters.

[4]  Weixuan Zhang,et al.  Hyperbolic band topology with non-trivial second Chern numbers , 2023, Nature Communications.

[5]  Sourav Manna,et al.  Dynamic mass generation on two-dimensional electronic hyperbolic lattices , 2023, 2302.04864.

[6]  R. N. Das,et al.  Aperiodic spin chains at the boundary of hyperbolic tilings , 2022, SciPost Physics.

[7]  E. Prodan,et al.  Spectral and Combinatorial Aspects of Cayley-Crystals , 2022, Annales Henri Poincaré.

[8]  T. Peng,et al.  Higher-order topological insulators in hyperbolic lattices , 2022, Physical Review B.

[9]  Yutian Tao,et al.  Higher-order topological hyperbolic lattices , 2022, Physical review B.

[10]  Á. Nagy,et al.  On the Hyperbolic Bloch Transform , 2022, Annales Henri Poincaré.

[11]  J. Vidal,et al.  Aharonov-Bohm cages, flat bands, and gap labeling in hyperbolic tilings , 2022, Physical Review B.

[12]  J. Maciejko,et al.  Flat bands and band-touching from real-space topology in hyperbolic lattices , 2022, Physical Review B.

[13]  G. Giulio,et al.  Towards explicit discrete holography: Aperiodic spin chains from hyperbolic tilings , 2022, SciPost Physics.

[14]  R. Thomale,et al.  Hyperbolic matter in electrical circuits with tunable complex phases , 2022, Nature Communications.

[15]  H. Hinrichsen,et al.  Breitenlohner-Freedman Bound on Hyperbolic Tilings. , 2022, Physical review letters.

[16]  Xiaoming Mao,et al.  Band Theory and Boundary Modes of High-Dimensional Representations of Infinite Hyperbolic Lattices. , 2022, Physical review letters.

[17]  R. Thomale,et al.  Hyperbolic Topological Band Insulators. , 2022, Physical review letters.

[18]  Weixuan Zhang,et al.  Observation of novel topological states in hyperbolic lattices , 2022, Nature Communications.

[19]  T. Peng,et al.  Chern insulator in a hyperbolic lattice , 2022, Physical Review B.

[20]  S. Rayan,et al.  Hyperbolic band theory through Higgs bundles , 2022, Advances in Mathematics.

[21]  I. Boettcher,et al.  Selberg trace formula in hyperbolic band theory. , 2022, Physical review. E.

[22]  K. Ni,et al.  Quantum science with optical tweezer arrays of ultracold atoms and molecules , 2021, Nature Physics.

[23]  R. Thomale,et al.  Universality of Hofstadter Butterflies on Hyperbolic Lattices. , 2021, Physical review letters.

[24]  W. Bakr,et al.  Realization of a Fermi-Hubbard Optical Tweezer Array. , 2021, Physical review letters.

[25]  M. Koshino,et al.  Topological invariants in two-dimensional quasicrystals , 2021, Physical Review Research.

[26]  Patrick M. Lenggenhager,et al.  Simulating hyperbolic space on a circuit board , 2021, Nature Communications.

[27]  Joseph Cook Properties of eigenvalues on Riemann surfaces with large symmetry groups , 2021, 2108.11825.

[28]  J. Maciejko,et al.  Automorphic Bloch theorems for hyperbolic lattices , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. Rouxinol,et al.  Higher-dimensional Euclidean and non-Euclidean structures in planar circuit quantum electrodynamics , 2021, 2108.08854.

[30]  Kazuki Ikeda,et al.  Algebra of Hyperbolic Band Theory under Magnetic Field , 2021, Canadian journal of physics (Print).

[31]  Alicia J. Kollár,et al.  Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models. , 2021, Physical review letters.

[32]  Alexey V. Gorshkov,et al.  Crystallography of hyperbolic lattices , 2021, Physical Review B.

[33]  Kazuki Ikeda,et al.  Hyperbolic band theory under magnetic field and Dirac cones on a higher genus surface , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  N. P. Breuckmann,et al.  Quantum phase transitions of interacting bosons on hyperbolic lattices , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Massimo Ruzzene,et al.  Dynamics of elastic hyperbolic lattices , 2021, OPTO.

[36]  Ze-Guo Chen,et al.  Acoustic Realization of a Four-Dimensional Higher-Order Chern Insulator and Boundary-Modes Engineering , 2021 .

[37]  G. Rastelli,et al.  Second Chern Number and Non-Abelian Berry Phase in Topological Superconducting Systems , 2020, 2008.08319.

[38]  Joseph Maciejko,et al.  Hyperbolic band theory , 2020, Science advances.

[39]  M. Asaduzzaman,et al.  Holography on tessellations of hyperbolic space , 2020, 2005.12726.

[40]  N. Park,et al.  Topological Hyperbolic Lattices. , 2020, Physical review letters.

[41]  Y. Chong,et al.  Circuit implementation of a four-dimensional topological insulator , 2020, Nature Communications.

[42]  R. Brower,et al.  Lattice setup for quantum field theory in AdS2 , 2019, 1912.07606.

[43]  J. Eisert,et al.  Central charges of aperiodic holographic tensor-network models , 2019, Physical Review A.

[44]  Alicia J. Kollár,et al.  Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry. , 2019, Physical review. A.

[45]  Shizeng Lin,et al.  Topological sliding moiré heterostructure , 2019, Physical Review B.

[46]  L. Chaput Berry Phases in Electronic Structure Theory. Electric Polarization, Orbital Magnetization and Topological Insulators. By David Vanderbilt. Cambridge University Press, 2018. Hardback, pp. x+384. Price GBP 59.99. ISBN 9781107157651. , 2019, Acta crystallographica. Section A, Foundations and advances.

[47]  D. Vanderbilt Berry Phases in Electronic Structure Theory , 2018 .

[48]  M. Nakahara Geometry, Topology and Physics , 2018 .

[49]  H. Price,et al.  Six-dimensional quantum Hall effect and three-dimensional topological pumps , 2018, Physical Review B.

[50]  F. Flicker,et al.  Conformal Quasicrystals and Holography , 2018, Physical Review X.

[51]  M. Lewenstein,et al.  Efficient algorithm to compute the second Chern number in four dimensional systems , 2018, Quantum Science and Technology.

[52]  Alicia J. Kollár,et al.  Hyperbolic lattices in circuit quantum electrodynamics , 2018, Nature.

[53]  Maureen T. Carroll Geometry , 2017 .

[54]  Immanuel Bloch,et al.  Exploring 4D quantum Hall physics with a 2D topological charge pump , 2017, Nature.

[55]  Kevin P. Chen,et al.  Photonic topological boundary pumping as a probe of 4D quantum Hall physics , 2017, Nature.

[56]  A. Gendiar,et al.  Analysis of quantum spin models on hyperbolic lattices and Bethe lattice , 2015, 1510.01450.

[57]  M. Gilbert,et al.  Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators , 2012, 1207.5767.

[58]  G. Tarjus,et al.  Periodic boundary conditions on the pseudosphere , 2007, cond-mat/0703326.

[59]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[60]  T. Fukui,et al.  Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances , 2005, cond-mat/0503172.

[61]  Silvio Levy,et al.  The Eightfold way : the beauty of Klein's quartic curve , 2002 .

[62]  Jozef Sirán,et al.  Triangle group representations and their applications to graphs and maps , 2001, Discret. Math..

[63]  Rick Miranda,et al.  Algebraic Curves and Riemann Surfaces , 1995 .

[64]  P. Schmutz Reimann surfaces with shortest geodesic of maximal length , 1993 .

[65]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[66]  G. Vallier Be more precise. , 1992, Orthopedics.

[67]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[68]  Zak,et al.  Berry's phase for energy bands in solids. , 1989, Physical review letters.

[69]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[70]  G. Semenoff,et al.  Condensed-Matter Simulation of a Three-Dimensional Anomaly , 1984 .

[71]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[72]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[73]  T. C. Chau A note concerning Fox’s paper on Fenchel’s conjecture , 1983 .

[74]  R. D. Accola,et al.  On the number of automorphisms of a closed Riemann surface , 1968 .

[75]  J. Mennicke Eine Bemerkung über Fuchssche Gruppen , 1967 .

[76]  Oskar Bolza,et al.  On Binary Sextics with Linear Transformations into Themselves , 1887 .

[77]  Felix Klein,et al.  Ueber die Transformation siebenter Ordnung der elliptischen Functionen , 1878 .

[78]  E. B. Manoukian Gauge Fields , 2020, 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand.

[79]  Swen Kortig Differential Geometry And Lie Groups For Physicists , 2016 .

[80]  Yıldız Albostan A MASTER'S THESIS , 2012 .

[81]  J. Wolfart Triangle groups and Jacobians of CM type , 2011 .

[82]  V. Fedorenko,et al.  Simple Dynamical Systems , 1997 .

[83]  T. Kuusalo,et al.  Geometric uniformization in genus 2. , 1995 .

[84]  John C. Baez,et al.  Gauge Fields, Knots and Gravity , 1994 .

[85]  A. Comtet On the Landau Levels on the Hyperbolic Plane , 1987 .

[86]  A. Cracknell,et al.  The mathematical theory of symmetry in solids;: Representation theory for point groups and space groups, , 1972 .

[87]  C. Maclachlan,et al.  A Bound for the Number of Automorphisms of a Compact Riemann Surface , 1969 .

[88]  I. Miyazaki,et al.  AND T , 2022 .