Fractional statistical dynamics and fractional kinetics

We apply the subordination principle to construct kinetic fractional statistical dynamics in the continuum in terms of solutions to Vlasov-type hierarchies. As a by-product we obtain the evolution of the density of particles in the fractional kinetics in terms of a non-linear Vlasov-type kinetic equation. As an application we study the intermittency of the fractional mesoscopic dynamics.

[1]  Fractional Boson Gas and Fractional Poisson Measure in Infinite Dimensions , 2015 .

[2]  Dmitri Finkelshtein,et al.  Statistical dynamics of continuous systems: perturbative and approximative approaches , 2014, 1402.1583.

[3]  Yuri Kozitsky,et al.  The statistical dynamics of a spatial logistic model and the related kinetic equation , 2014 .

[4]  J. L. D. Silva,et al.  Studies in fractional poisson measures , 2012 .

[5]  Dmitri Finkelshtein,et al.  Semigroup approach to birth-and-death stochastic dynamics in continuum , 2011, 1109.5094.

[6]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[7]  M. Meerschaert,et al.  The Fractional Poisson Process and the Inverse Stable Subordinator , 2010, 1007.5051.

[8]  Dmitri Finkelshtein,et al.  Vlasov Scaling for Stochastic Dynamics of Continuous Systems , 2010 .

[9]  Francesco Mainardi,et al.  The -Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey , 2010, 1004.2950.

[10]  R. T. Sibatov,et al.  Fractional Processes: from Poisson to Branching One , 2008, Int. J. Bifurc. Chaos.

[11]  Yuri Kondratiev,et al.  CORRELATION FUNCTIONS AND INVARIANT MEASURES IN CONTINUOUS CONTACT MODEL , 2008 .

[12]  Murad S. Taqqu,et al.  Non-Markovian diffusion equations and processes: Analysis and simulations , 2007, 0712.0240.

[13]  Francesco Mainardi,et al.  Beyond the Poisson renewal process: A tutorial survey , 2007 .

[14]  R. Gorenflo,et al.  Analytical properties and applications of the Wright function , 2007, math-ph/0701069.

[15]  Oleksandr Kutoviy,et al.  On the metrical properties of the configuration space , 2006 .

[16]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[17]  R. Gorenflo,et al.  A fractional generalization of the Poisson processes , 2007, math/0701454.

[18]  N. Laskin Fractional Poisson process , 2003 .

[19]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[20]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[21]  Emilia Bazhlekova,et al.  Fractional evolution equations in Banach spaces , 2001 .

[22]  A. I. Saichev,et al.  Fractional Poisson Law , 2000 .

[23]  E. Bazhlekova Subordination principle for fractional evolution equations , 1999 .

[24]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[25]  E. Davies EVOLUTIONARY INTEGRAL EQUATIONS AND APPLICATIONS (Monographs in Mathematics 87) , 1996 .

[26]  R. Carmona,et al.  Stationary parabolic Anderson model and intermittency , 1995 .

[27]  R. Carmona,et al.  Parabolic Anderson Problem and Intermittency , 1994 .

[28]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[29]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[30]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[31]  B. Braaksma,et al.  Asymptotic expansions and analytic continuations for a class of Barnes-integrals , 1964 .

[32]  N. N. Bogolyubov,et al.  Problems of a Dynamical Theory in Statistical Physics , 1959 .