Optical Properties of Ices From UV to Infrared

Remote sensing of ices at the surfaces and in the atmospheres of system solar objects are the subject of increasing studies in the UV, visible and infrared ranges. The spectro-imagers and spectrophotometers aboard space probes will further expand these studies. One critical problem for the interpretation of the astronomical absorption and emission spectra is the availability of laboratory data on the optical properties of the relevant ices.

[1]  W. R. Thompson,et al.  Optical constants of solid methane , 1989 .

[2]  J. Lunine,et al.  Clathrate Hydrates on Earth and in the Solar System , 1998 .

[3]  J. Lunine,et al.  Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system , 1985 .

[4]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[5]  Robert E. Johnson Sputtering and Desorption from Icy Surfaces , 1998 .

[6]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[7]  H. Jodl,et al.  FTIR-spectra of solid O2, N2 and CO , 1987 .

[8]  M. Moore,et al.  Far-infrared investigations of a methanol clathrate hydrate - Implications for astronomical observations , 1993 .

[9]  U. Fink,et al.  Absorption coefficients of solid NH3 from 50 to 7000 per cm , 1980 .

[10]  W. R. Thompson,et al.  Production and Optical Constants of Ice Tholin from Charged Particle Irradiation of (1:6) C2H6/H2O at 77 K , 1993 .

[11]  B. Schmitt,et al.  Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2: CH4 mixtures , 1996 .

[12]  H. Dubost Infrared absorption spectra of carbon monoxide in rare gas matrices , 1976 .

[13]  Milton Kerker,et al.  CHAPTER 2 – Electromagnetic Waves , 1969 .

[14]  H. Dubost,et al.  High-resolution diode laser spectroscopy of CO in solid N2: Effect of dipolar broadening on vibrational transitions , 1982 .

[15]  B. Schmitt,et al.  The Temperature-Dependent Spectra of α and β Nitrogen Ice with Application to Triton , 1993 .

[16]  J. Pearl,et al.  Optical constants of solid methane and ethane from 10,000 to 450/cm. [in outer planets atmospheres] , 1991 .

[17]  John R. Spencer,et al.  Charge‐coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede , 1995 .

[18]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[19]  John P. McTague,et al.  Molecular Vibrations in Crystals , 1978 .

[20]  T. Owen,et al.  The Surface Compositions of Triton, Pluto, and Charon , 1995 .

[21]  E. Pelletier,et al.  Methods for Determining Optical Parameters of Thin Films , 1997 .

[22]  J. Greenberg,et al.  The temperature dependence of the CO infrared band strength in CO:H2O ices , 1989 .

[23]  D. R. Worsnop,et al.  FREQUENCY-DEPENDENT OPTICAL CONSTANTS OF WATER ICE OBTAINED DIRECTLY FROM AEROSOL EXTINCTION SPECTRA , 1995 .

[24]  Steven M. George,et al.  Refractive Indices of Amorphous and Crystalline HNO3/H2O Films Representative of Polar Stratospheric Clouds , 1994 .

[25]  A. R. Hyland,et al.  Molecular ices as temperature indicators for interstellar dust: the 44- and 62-μm lattice features of H2O ice , 1994 .

[26]  S. Sandford,et al.  The physical and infrared spectral properties of CO2 in astrophysical ice analogs. , 1990, The Astrophysical journal.

[27]  G. Ewing,et al.  Infrared spectroscopy of carbon dioxide ultrafine particles , 1988 .

[28]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[29]  W. Calvin Additions and corrections to the absorption coefficients of CO2 Ice: Applications to the Martian south polar cap , 1990 .

[30]  J. Pearl,et al.  Crystalline sulfur dioxide: Crystal field splittings, absolute band intensities, and complex refractive indices derived from infra-red spectra , 1988 .

[31]  R. Khanna,et al.  Infrared band extinctions and complex refractive indices of crystalline C2H2 and C4H2 , 1988 .

[32]  J. Martonchik,et al.  Optical properties of NH3 ice from the far infrared to the near ultraviolet. , 1984, Applied optics.

[33]  H. Löwen,et al.  Vibron–phonon excitations in the molecular crystals N2, O2, and CO by Fourier transform infrared and Raman studies , 1990 .

[34]  C. Moore,et al.  Chemical and biochemical applications of lasers , 1974 .

[35]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.

[36]  F. Forget Mars CO2 Ice Polar Caps , 1998 .

[37]  Brian R. Johnson,et al.  Feasibility of Determining the Composition of Planetary Ices by Far Infrared Observations: Application to Martian Cloud and Surface Ices , 1996 .

[38]  Donald K. Perovich,et al.  Radiation absorption coefficients of polycrystalline ice from 400–1400 nm , 1981 .

[39]  R. Miller,et al.  Shape Effects in the Infrared Spectrum of Ammonia Aerosols , 1993 .

[40]  S. Sandford,et al.  Infrared spectroscopy of Triton and Pluto ice analogs: the case for saturated hydrocarbons. , 1994, Icarus.

[41]  J. Pearl,et al.  Optical constants of solid methane and ethane from 10,000 to 450 cm−1 , 1991 .

[42]  E. J. Allin,et al.  The absorption spectrum of solid oxygen in the wavelength region from 12,000 Å to 3300 Å , 1962 .

[43]  S. Sandford,et al.  The 2.5-5.0 micron spectra of Io: Evidence for H2S and H2O frozen in SO2 , 1990 .

[44]  S. Sandford,et al.  Laboratory studies of the newly discovered infrared band at 4705.2 cm-1 (2.1253 micrometers) in the spectrum of Io: the tentative identification of CO2. , 1991, Icarus.

[45]  V. Schettino,et al.  Dipole-dipole interaction and internal vibrations in molecular crystals , 1978 .

[46]  D. B. Nash,et al.  HIGH-RESOLUTION INFRARED-SPECTROSCOPY OF IO AND POSSIBLE SURFACE MATERIALS , 1989 .

[47]  H. Löwen,et al.  Sideband modeling in molecular crystals N2 and CO2 , 1992 .

[48]  J. Bertie,et al.  The infrared spectra of the hydrates of ammonia, NH3⋅H2O and 2NH3⋅H2O at 95 °K , 1980 .

[49]  S. Sandford,et al.  Is H2O present on Io? The detection of a new strong band near 3590 cm-1 (2.79 micrometers). , 1994, Icarus.

[50]  T. Owen,et al.  Spectroscopic Determination of the Phase Composition and Temperature of Nitrogen Ice on Triton , 1993, Science.

[51]  F. Abelès,et al.  VI Methods for Determining Optical Parameters of Thin Films , 1963 .

[52]  J. W. Govoni,et al.  Absorption coefficients of ice from 250 to 400 nm , 1991 .

[53]  B. Hapke,et al.  Far-UV, visible, and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2 , 1981 .

[54]  S. Sandford,et al.  Laboratory studies of the infrared spectral properties of CO in astrophysical ices. , 1988, The Astrophysical journal.

[55]  S. Warren Optical constants of carbon dioxide ice. , 1986, Applied optics.

[56]  B. Nelander On the infrared spectrum of a carbon dioxide containing nitrogen matrix , 1976 .

[57]  A. Kouchi,et al.  Amorphization of cubic ice by ultraviolet irradiation , 1990, Nature.

[58]  G. Leto,et al.  Ion irradiation experiments relevant to cometary physics , 1991 .

[59]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5 micrometer spectral range , 1993 .

[60]  É. Quirico Etudes spectroscopiques proche infrarouges de solides moléculaires : application à l'étude des surfaces glacées de Triton et Pluton , 1995 .

[61]  D. Mills,et al.  Refractive Index of Carbon Dioxide Cryodeposit , 1968 .

[62]  Ann M. Middlebrook,et al.  Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates , 1994 .

[63]  M. Moskovits,et al.  Chemistry and physics of matrix-isolated species , 1989 .

[64]  P. Helfenstein,et al.  Reflectance Spectroscopy of Icy Surfaces , 1998 .

[65]  N. Russo,et al.  Laboratory Infrared Spectroscopic Studies of Crystalline Nitriles with Relevance to Outer Planetary Systems , 1996 .

[66]  L. Dones The Rings of the Outer Planets , 1998 .

[67]  S. Sandford,et al.  Mid- and far-infrared spectroscopy of ices: optical constants and integrated absorbances. , 1993, The Astrophysical journal. Supplement series.

[68]  D. Blake,et al.  Crystallization of Amorphous Water Ice in the Solar System , 1996, The Astrophysical journal.

[69]  A. J. Cohen,et al.  On the effect of X rays on the color of elemental sulfur - Implications for Jupiter's satellite Io , 1990 .

[70]  E. F. Barker,et al.  The Infrared Absorption Spectrum of Carbon Dioxide , 1932 .

[71]  R. K. Ahrenkiel,et al.  Modified Kramers–Kronig Analysis of Optical Spectra , 1971 .

[72]  R. Khanna,et al.  Vibrational infrared and raman spectra of dicyanoacetylene , 1987 .

[73]  V. Schettino,et al.  Lattice Dynamics of Molecular Crystals , 1981 .

[74]  Roger V. Yelle,et al.  The emissivity of volatile ices on Triton and Pluto , 1996 .

[75]  B. M. Chadwick,et al.  The infrared activation of the N—N stretching vibration in nitrogen matrices , 1980 .

[76]  J. Dubochet,et al.  ELECTRON BEAM INDUCED “VITRIFIED ICE” , 1983 .

[77]  U. Fink,et al.  Absorption coefficients of solid NH 3 from 50 to 7000 cm −1 , 1980 .

[78]  B. Schmitt,et al.  Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure Ices: Implications for Triton and Pluto , 1997 .

[79]  A. M. Smith,et al.  INFRARED REFLECTANCE AND REFRACTIVE INDEX OF CONDENSED GAS FILMS ON CRYOGENIC MIRRORS , 1978 .

[80]  S. Stern,et al.  Evidence for a Low Surface Temperature on Pluto from Millimeter-Wave Thermal Emission Measurements , 1993, Science.

[81]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[82]  F. Trotta Détermination des constantes optiques de glaces dans l'infrarouge moyen et lointain : application aux grains du milieu interstellaire et des enveloppes circumstellaires , 1996 .

[83]  Dale P. Cruikshank,et al.  Ices on the Satellites of Jupiter, Saturn, and Uranus , 1995 .

[84]  P. Foggi,et al.  Phonon relaxation in molecular crystals: Theory and experiments , 1992 .

[85]  J. Devlin,et al.  FT-IR spectra of carbon dioxide clusters , 1989 .

[86]  Bernard Schmitt,et al.  The temperature‐dependent near‐infrared absorption spectrum of hexagonal H2O ice , 1998 .

[87]  R. E. Behringer,et al.  Number of Single, Double, and Triple Clusters in a System Containing Two Types of Atoms , 1958 .

[88]  D. B. Nash,et al.  Laboratory Infrared Spectra (2.3-23 μm) of SO2 Phases: Applications to Io Surface Analysis , 1995 .

[89]  B. Nelander Infrared spectrum of the water formaldehyde complex in solid argon and solid nitrogen , 1980 .

[90]  William M. Irvine,et al.  Infrared optical properties of water and ice spheres , 1968 .

[91]  Leo W. Hollberg,et al.  High-resolution diode-laser spectroscopy of calcium , 1994 .

[92]  R. Clark,et al.  Modeling the reflectance spectrum of Callisto 0.25 to 4.1 μm , 1991 .

[93]  B. Hapke,et al.  Spectral properties of condensed phases of disulfur monoxide, polysulfur oxide, and irradiated sulfur , 1989 .

[94]  M. Moore,et al.  Far-infrared spectral studies of phase changes in water ice induced by proton irradiation , 1992 .

[95]  J. A. Roux,et al.  Infrared optical properties of thin H 2 O, NH 3 , and CO 2 cryofilms , 1982 .

[96]  F. Legay 2 – Vibrational Relaxation in Matrices , 1977 .

[97]  Robert E. Johnson,et al.  The effect of magnetospheric ion bombardment on the reflectance of Europa's surface , 1992 .

[98]  Bernard Schmitt,et al.  A Spectroscopic Study of CO Diluted in N2Ice: Applications for Triton and Pluto☆ , 1997 .

[99]  D. B. Nash,et al.  Phase transformations and the spectral reflectance of solid sulfur: Can metastable sulfur allotropes exist on Io? , 1991 .

[100]  R. Nelson,et al.  Spectral reflectance of solid sulfur trioxide (0.25–5.2 μm): Implications for Jupiter's satellite Io , 1986 .

[101]  K. Tryka,et al.  Near-Infrared Absorption Coefficients of Solid Nitrogen as a Function of Temperature , 1995 .

[102]  B. Wood,et al.  Infrared Optical Properties of Thin CO, NO, CH4, HC1, N2O, O2, N2, Ar, and Air Cryofilms , 1983 .

[103]  W. Krätschmer,et al.  Optical constants of the mixture of ices , 1986 .

[104]  G. Strazzulla Chemistry of Ice Induced by Bombardment with Energetic Charged Particles , 1998 .

[105]  B. Desbat,et al.  Thin-Film Optical Constants Determined from Infrared Reflectance and Transmittance Measurements , 1989 .

[106]  D R McKenzie,et al.  Unambiguous determination of optical constants of absorbing films by reflectance and transmittance measurements. , 1984, Applied optics.

[107]  J. Lenoble,et al.  Terrestrial Snow Studies from Remote Sensing in the Solar Spectrum and the Thermal Infrared , 1998 .

[108]  D. B. Nash,et al.  Ices on Io — Composition and Texture , 1998 .

[109]  Dudley A. Williams,et al.  Optical constants of ice in the infrared , 1973 .

[110]  D. B. Nash,et al.  Hydrogen Sulfide on IO: Evidence from Telescopic and Laboratory Infrared Spectra , 1989, Science.

[111]  A. Cabana,et al.  Infrared spectra and structure of methane – noble gas mixed crystals: the influence of temperature and methane concentration on the v3 vibration band of methane , 1970 .

[112]  T. Dunder,et al.  Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell , 1990 .

[113]  A. Barbe,et al.  Identification of Three Absorption Bands in the 2-μm Spectrum of Io , 1994 .

[114]  R. Khanna,et al.  Absorption intensities and complex refractive indices of crystalline HCN, HC3N, and C4N2 in the infrared region , 1990 .

[115]  G. Strazzulla,et al.  The 2140 cm−1 band of frozen CO: laboratory experiments and astrophysical applications , 1993 .

[116]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[117]  R. Khanna,et al.  Absolute intensities and optical constants of crystalline C2N2 in the infrared region , 1988 .