Martensitic phase transition in pure zirconia: a crystal chemistry viewpoint
暂无分享,去创建一个
[1] J. Perez-Mato,et al. AMPLIMODES: symmetry‐mode analysis on the Bilbao Crystallographic Server , 2009 .
[2] G. Trolliard,et al. Pure orthorhombic zirconia islands grown on single-crystal sapphire substrates , 2007 .
[3] A. Navrotsky,et al. High-temperature calorimetry of zirconia: Heat capacity and thermodynamics of the monoclinic–tetragonal phase transition , 2006 .
[4] Hans Wondratschek,et al. Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .
[5] J. Perez-Mato,et al. Maximal symmetry transition paths for reconstructive phase transitions , 2005 .
[6] J. Chevalier,et al. Martensitic transformation in zirconiaPart II. Martensite growth , 2004, 1804.01460.
[7] J. Chevalier,et al. Martensitic transformation in zirconia: Part I. Nanometer scale prediction and measurement of transformation induced relief , 2004, 1804.01461.
[8] M. Smirnov,et al. Phenomenological theory of lattice dynamics and polymorphism of ZrO 2 , 2003 .
[9] D. Gosset,et al. Monoclinic to tetragonal semireconstructive phase transition of zirconia , 2003 .
[10] L. Truskinovsky,et al. Unified Landau description of the tetragonal, orthorhombic, and monoclinic phases of zirconia , 2002 .
[11] L. Truskinovsky,et al. Elastic crystals with a triple point , 2002 .
[12] L. R. Francis Rose,et al. The martensitic transformation in ceramics — its role in transformation toughening , 2002 .
[13] Wataru Utsumi,et al. Phase relations and equations of state of ZrO 2 under high temperature and high pressure , 2001 .
[14] Pierre Bouvier,et al. High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia , 2000 .
[15] Jianfang Wang,et al. Paths and cycles of hypergraphs , 1999 .
[16] A. Heuer,et al. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals , 1998 .
[17] A. Domínguez-Rodríguez,et al. Ferroelasticity of the displacive tetragonal phase in Y 2 O 3 partially stabilized ZrO 2 (Y-PSZ) single crystals , 1996 .
[18] P. Kelly,et al. High‐Resolution Transmission Electron Microscopy of Transformed Magnesia‐Partially‐Stabilized Zirconia Precipitates , 1995 .
[19] J. Leger,et al. Crystal Structure and Equation of State of Cotunnite‐Type Zirconia , 1995 .
[20] J. Grabis,et al. Powder diffraction investigations of plasma sprayed zirconia , 1995, Journal of Materials Science.
[21] V. Pereira,et al. Pressure-induced structural phase transitions in zirconia under high pressure. , 1993, Physical review. B, Condensed matter.
[22] T. Vogt,et al. Neutron powder investigation of the tetragonal to monoclinic phase transformation in undoped zirconia , 1991 .
[23] E. Kisi,et al. Crystal Structures of Two Orthorhombic Zirconias , 1991 .
[24] Alexandra Navrotsky,et al. Stability of Monoclinic and Orthorhombic Zirconia: Studies by High‐Pressure Phase Equilibria and Calorimetry , 1991 .
[25] T. Vogt,et al. Neutron powder investigation of the monoclinic to tetragonal phase transformation in undoped zirconia , 1990 .
[26] M. Lewis,et al. Evidence of ferroelasticity in Y-tetragonal zirconia polycrystals , 1990 .
[27] F. Izumi,et al. Structural Analysis of Orthorhombic ZrO2 by High Resolution Neutron Powder Diffraction , 1990 .
[28] A. Heuer,et al. On the orthorhombic phase in ZrO2-based alloys , 1989 .
[29] K. Negita,et al. Condensations of phonons at the tetragonal to monoclinic phase transition in ZrO2 , 1989 .
[30] R. J. Hill,et al. Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction , 1988 .
[31] 宗宮 重行,et al. Science and technology of zirconia III , 1988 .
[32] Hiroshi Takeda,et al. In situ determination of crystal structure for high pressure phase of ZrO2 using a diamond anvil and single crystal X-ray diffraction method , 1986 .
[33] K. Sahl,et al. Solid Solutions in the System LaMgAl11O19‐ LaMgGa11O19‐LaMgFe11O19 , 1986 .
[34] Stanley Block,et al. Pressure‐Temperature Phase Diagram of Zirconia , 1985 .
[35] L. Schreiner,et al. NMR Line Shape-Spin-Lattice Relaxation Correlation Study of Portland Cement Hydration , 1985 .
[36] R. Kikuchi,et al. Demixing of Materials under Chemical Potential Gradients , 1985 .
[37] A. Heuer,et al. Microstructural Development in MgO‐Partially Stabilized Zirconia (Mg‐PSZ) , 1979 .
[38] T. F. Volynova. International Conference on Martensitic Transformations , 1977 .
[39] A. Heuer,et al. On a martensitic phase transformation in zirconia (ZrO2)—II. Crystallographic aspects , 1973 .
[40] W. W. Barker,et al. A high-temperature neutron diffraction study of pure and scandia-stabilized zirconia , 1973 .
[41] E. Subbarao,et al. Monoclinic–tetragonal phase transition in zirconia: mechanism, pretransformation and coexistence , 1970 .
[42] D. K. Smith,et al. The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 , 1965 .
[43] J. E. Bailey. The monoclinic-tetragonal transformation and associated twinning in thin films of zirconia , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[44] G. M. Wolten. Direct high‐temperature single‐crystal observation of orientation relationship in zirconia phase transformation , 1964 .
[45] G. M. Wolten. Diffusionless Phase Transformations in Zirconia and Hafnia , 1963 .
[46] G. Teufer,et al. The crystal structure of tetragonal ZrO2 , 1962 .
[47] J. Mackenzie,et al. The crystallography of martensite transformations II , 1954 .