Martensitic phase transition in pure zirconia: a crystal chemistry viewpoint

Abstract A crystal chemistry approach was carried out in order to decipher the mechanisms involved in phase transitions of zirconia. A detailed analysis of structures, based on structural sheets of half fluorite cell thick and described in terms of SDF and HDF (for slightly and highly distorted fluorite) sheets is proposed for the first time. This approach allowed clarifying the relationships between tetragonal, orthorhombic and monoclinic forms. This concept permits to propose simple structural relationships between the structures of the different polymorphs. These relationships and their correlated transformation pathways were confirmed using symmetry group relations. The results were compared to those obtained by the phenomenological approach of the tetragonal → monoclinic (T → M) martensitic phase transition. The different lattice correspondences are revisited and discussed. For the first time, some fine structural models were proposed to describe the pathways of atomic displacements taking place during each possible phase transitions. The T→M phase transition is the main transformation pathway. It may solely gives rise to the C-type lattice correspondence, the (100)M||(100)T and [001]M||[001]T relationship allowing the minimum structural changes during the transformation. The B-type variant with (100)M||(100)T and [010]M||[001]T may be developed from an indirect pathway involving either a ferroelastic phase transition by domain switching taking place in the T phase before the T → M phase transition operates or a two stage process involving a combined T → O and O → M successive and independent transitions. The orthorhombic phase is an alternative form to the monoclinic one and is in no way an intermediate phase.

[1]  J. Perez-Mato,et al.  AMPLIMODES: symmetry‐mode analysis on the Bilbao Crystallographic Server , 2009 .

[2]  G. Trolliard,et al.  Pure orthorhombic zirconia islands grown on single-crystal sapphire substrates , 2007 .

[3]  A. Navrotsky,et al.  High-temperature calorimetry of zirconia: Heat capacity and thermodynamics of the monoclinic–tetragonal phase transition , 2006 .

[4]  Hans Wondratschek,et al.  Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .

[5]  J. Perez-Mato,et al.  Maximal symmetry transition paths for reconstructive phase transitions , 2005 .

[6]  J. Chevalier,et al.  Martensitic transformation in zirconiaPart II. Martensite growth , 2004, 1804.01460.

[7]  J. Chevalier,et al.  Martensitic transformation in zirconia: Part I. Nanometer scale prediction and measurement of transformation induced relief , 2004, 1804.01461.

[8]  M. Smirnov,et al.  Phenomenological theory of lattice dynamics and polymorphism of ZrO 2 , 2003 .

[9]  D. Gosset,et al.  Monoclinic to tetragonal semireconstructive phase transition of zirconia , 2003 .

[10]  L. Truskinovsky,et al.  Unified Landau description of the tetragonal, orthorhombic, and monoclinic phases of zirconia , 2002 .

[11]  L. Truskinovsky,et al.  Elastic crystals with a triple point , 2002 .

[12]  L. R. Francis Rose,et al.  The martensitic transformation in ceramics — its role in transformation toughening , 2002 .

[13]  Wataru Utsumi,et al.  Phase relations and equations of state of ZrO 2 under high temperature and high pressure , 2001 .

[14]  Pierre Bouvier,et al.  High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia , 2000 .

[15]  Jianfang Wang,et al.  Paths and cycles of hypergraphs , 1999 .

[16]  A. Heuer,et al.  Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals , 1998 .

[17]  A. Domínguez-Rodríguez,et al.  Ferroelasticity of the displacive tetragonal phase in Y 2 O 3 partially stabilized ZrO 2 (Y-PSZ) single crystals , 1996 .

[18]  P. Kelly,et al.  High‐Resolution Transmission Electron Microscopy of Transformed Magnesia‐Partially‐Stabilized Zirconia Precipitates , 1995 .

[19]  J. Leger,et al.  Crystal Structure and Equation of State of Cotunnite‐Type Zirconia , 1995 .

[20]  J. Grabis,et al.  Powder diffraction investigations of plasma sprayed zirconia , 1995, Journal of Materials Science.

[21]  V. Pereira,et al.  Pressure-induced structural phase transitions in zirconia under high pressure. , 1993, Physical review. B, Condensed matter.

[22]  T. Vogt,et al.  Neutron powder investigation of the tetragonal to monoclinic phase transformation in undoped zirconia , 1991 .

[23]  E. Kisi,et al.  Crystal Structures of Two Orthorhombic Zirconias , 1991 .

[24]  Alexandra Navrotsky,et al.  Stability of Monoclinic and Orthorhombic Zirconia: Studies by High‐Pressure Phase Equilibria and Calorimetry , 1991 .

[25]  T. Vogt,et al.  Neutron powder investigation of the monoclinic to tetragonal phase transformation in undoped zirconia , 1990 .

[26]  M. Lewis,et al.  Evidence of ferroelasticity in Y-tetragonal zirconia polycrystals , 1990 .

[27]  F. Izumi,et al.  Structural Analysis of Orthorhombic ZrO2 by High Resolution Neutron Powder Diffraction , 1990 .

[28]  A. Heuer,et al.  On the orthorhombic phase in ZrO2-based alloys , 1989 .

[29]  K. Negita,et al.  Condensations of phonons at the tetragonal to monoclinic phase transition in ZrO2 , 1989 .

[30]  R. J. Hill,et al.  Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction , 1988 .

[31]  宗宮 重行,et al.  Science and technology of zirconia III , 1988 .

[32]  Hiroshi Takeda,et al.  In situ determination of crystal structure for high pressure phase of ZrO2 using a diamond anvil and single crystal X-ray diffraction method , 1986 .

[33]  K. Sahl,et al.  Solid Solutions in the System LaMgAl11O19‐ LaMgGa11O19‐LaMgFe11O19 , 1986 .

[34]  Stanley Block,et al.  Pressure‐Temperature Phase Diagram of Zirconia , 1985 .

[35]  L. Schreiner,et al.  NMR Line Shape-Spin-Lattice Relaxation Correlation Study of Portland Cement Hydration , 1985 .

[36]  R. Kikuchi,et al.  Demixing of Materials under Chemical Potential Gradients , 1985 .

[37]  A. Heuer,et al.  Microstructural Development in MgO‐Partially Stabilized Zirconia (Mg‐PSZ) , 1979 .

[38]  T. F. Volynova International Conference on Martensitic Transformations , 1977 .

[39]  A. Heuer,et al.  On a martensitic phase transformation in zirconia (ZrO2)—II. Crystallographic aspects , 1973 .

[40]  W. W. Barker,et al.  A high-temperature neutron diffraction study of pure and scandia-stabilized zirconia , 1973 .

[41]  E. Subbarao,et al.  Monoclinic–tetragonal phase transition in zirconia: mechanism, pretransformation and coexistence , 1970 .

[42]  D. K. Smith,et al.  The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 , 1965 .

[43]  J. E. Bailey The monoclinic-tetragonal transformation and associated twinning in thin films of zirconia , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[44]  G. M. Wolten Direct high‐temperature single‐crystal observation of orientation relationship in zirconia phase transformation , 1964 .

[45]  G. M. Wolten Diffusionless Phase Transformations in Zirconia and Hafnia , 1963 .

[46]  G. Teufer,et al.  The crystal structure of tetragonal ZrO2 , 1962 .

[47]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .