Smooth tail-index estimation

The two parametric distribution functions appearing in the extreme-value theory – the generalized extreme-value distribution and the generalized Pareto distribution – have log-concave densities if the extreme-value index γ∈[−1, 0]. Replacing the order statistics in tail-index estimators by their corresponding quantiles from the distribution function that is based on the estimated log-concave density ˆ f n leads to novel smooth quantile and tail-index estimators. These new estimators aim at estimating the tail index especially in small samples. Acting as a smoother of the empirical distribution function, the log-concave distribution function estimator reduces estimation variability to a much greater extent than it introduces bias. As a consequence, Monte Carlo simulations demonstrate that the smoothed version of the estimators are well superior to their non-smoothed counterparts, in terms of mean-squared error.

[1]  L. de Haan,et al.  On the maximal life span of humans. , 1994, Mathematical population studies.

[2]  K. Rufibach,et al.  On the max-domain of attraction of distributions with log-concave densities , 2008 .

[3]  Kee-Hoon Kang,et al.  Unimodal kernel density estimation by datra sharpening , 2005 .

[4]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[5]  J. Wellner,et al.  Limit Distribution Theory for Maximum Likelihood Estimation of a Log-Concave Density. , 2007, Annals of statistics.

[6]  I. Molchanov,et al.  Limit theorems for the diameter of a random sample in the unit ball , 2007 .

[7]  P. Hall,et al.  Data sharpening as a prelude to density estimation , 1999 .

[8]  Kaspar Rufibach,et al.  Active Set and EM Algorithms for Log-Concave Densities Based on Complete and Censored Data , 2007, 0707.4643.

[9]  Paul Deheuvels,et al.  Kernel Estimates of the Tail Index of a Distribution , 1985 .

[10]  Terry A. Marsh,et al.  Tail index estimation in small smaples Simulation results for independent and ARCH-type financial return models , 2004 .

[11]  Sándor Csörgő,et al.  SIMPLE ESTIMATORS OF THE ENDPOINT OF A DISTRIBUTION , 1989 .

[12]  I. Weissman,et al.  Maximum Likelihood Estimation of the Lower Tail of a Probability Distribution , 1985 .

[13]  Johan Segers,et al.  Generalized Pickands estimators for the extreme value index , 2005 .

[14]  S. Coles,et al.  Likelihood-Based Inference for Extreme Value Models , 1999 .

[15]  Olivier V. Pictet,et al.  The Distribution Of Extremal Foreign Exchange Rate Returns In Extremely Large Data Sets , 1998 .

[16]  L. Peng,et al.  Still Fit Generalized Pareto Distributions ? , 2008 .

[17]  Samuel Müller Tail Estimation Based on Numbers of Near m-Extremes , 2003 .

[18]  M. Falk Extreme quantile estimation in δ-neighborhoods of generalized Pareto distributions , 1994 .

[19]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[20]  Michael Falk,et al.  Some Best Parameter Estimates for Distributions with Finite Endpoint , 1995 .

[21]  R. Huisman,et al.  Tail-Index Estimates in Small Samples , 2001 .

[22]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[23]  J. Wellner,et al.  Estimation of a convex function: characterizations and asymptotic theory. , 2001 .

[24]  J. Hüsler,et al.  Weighted least squares estimation of the extreme value index , 2006 .

[25]  A. Ferreira,et al.  On optimising the estimation of high quantiles of a probability distribution , 2003 .

[26]  Piet Groeneboom,et al.  Kernel-type estimators for the extreme value index , 2003 .

[27]  Holger Drees,et al.  Refined Pickands estimators of the extreme value index , 1995 .

[28]  Small sample performance of robust estimators of tail parameters for pareto and exponential models , 2001 .

[29]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[30]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[31]  J. Hüsler,et al.  Iterative Estimation of the Extreme Value Index , 2005 .

[32]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[33]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[34]  Peter Hall,et al.  On Estimating the Endpoint of a Distribution , 1982 .

[35]  K. Rufibach Computing maximum likelihood estimators of a log-concave density function , 2007 .

[36]  Cláudia Neves,et al.  Extreme Value Distributions , 2011, International Encyclopedia of Statistical Science.

[37]  L. Duembgen,et al.  Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency , 2007, 0709.0334.

[38]  P. Hall,et al.  Estimating the end-point of a probability distribution using minimum-distance methods , 1999 .

[39]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[40]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .