Single disperser design for coded aperture snapshot spectral imaging.

We present a single disperser spectral imager that exploits recent theoretical work in the area of compressed sensing to achieve snapshot spectral imaging. An experimental prototype is used to capture the spatiospectral information of a scene that consists of two balls illuminated by different light sources. An iterative algorithm is used to reconstruct the data cube. The average spectral resolution is 3.6 nm per spectral channel. The accuracy of the instrument is demonstrated by comparison of the spectra acquired with the proposed system with the spectra acquired by a nonimaging reference spectrometer.

[1]  N. Sloane,et al.  Hadamard transform optics , 1979 .

[2]  Esko Herrala,et al.  Imaging spectrometer for process industry applications , 1994, Other Conferences.

[3]  Patrick J. Treado,et al.  Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters , 1994 .

[4]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[5]  E L Dereniak,et al.  Demonstration of a high-speed nonscanning imaging spectrometer. , 1997, Optics letters.

[6]  Jonathan Martin Mooney,et al.  High-throughput hyperspectral infrared camera , 1997 .

[7]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[8]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[9]  D. Arndt-Jovin,et al.  Three‐dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope , 2000, Journal of microscopy.

[10]  J. S. Dam,et al.  Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. , 2000, Applied optics.

[11]  Eric Sztanko Imaging Fourier transform spectrometer , 2001 .

[12]  William L. Smith,et al.  Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft , 2001, SPIE Asia-Pacific Remote Sensing.

[13]  J. V. Michalowicz,et al.  WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment) , 2001, SPIE Defense + Commercial Sensing.

[14]  J. Brown,et al.  Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[15]  Alex Zehnder,et al.  The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI) mission , 2003, SPIE Optics + Photonics.

[16]  Roger Fletcher,et al.  Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming , 2005, Numerische Mathematik.

[17]  N. Pitsianis,et al.  Static two-dimensional aperture coding for multimodal, multiplex spectroscopy. , 2006, Applied optics.

[18]  Daniel W. Wilson,et al.  Spatial-spectral modulating snapshot hyperspectral imager. , 2006, Applied optics.

[19]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[20]  J. Lerner Imaging spectrometer fundamentals for researchers in the biosciences—A tutorial , 2006, Cytometry Part A.

[21]  David J. Brady,et al.  Compressive imaging spectrometers using coded apertures , 2006, SPIE Defense + Commercial Sensing.

[22]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[23]  M E Gehm,et al.  Single-shot compressive spectral imaging with a dual-disperser architecture. , 2007, Optics express.

[24]  Ashwin A. Wagadarikar,et al.  Performance comparison of aperture codes for multimodal, multiplex spectroscopy. , 2007, Applied optics.