Some Asymptotic Expansions for Prolate Spheroidal Wave Functions
暂无分享,去创建一个
[1] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .
[2] D. Rhodes,et al. On the optimum line source for the best mean-square approximation to a given radiation pattern , 1963 .
[3] J. Gordon,et al. Confocal multimode resonator for millimeter through optical wavelength masers , 1961 .
[4] W. Fuchs. On the eigenvalues of an integral equation arising in the theory of band-limited signals , 1964 .
[5] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations. II , 1964 .
[6] H. Pollak,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .
[7] J. Meixner,et al. Mathieusche Funktionen und Sphäroidfunktionen , 1954 .
[8] Mario Petrich. On the Number of Orthogonal Signals Which Can Be Placed in a $WT$-Product , 1963 .
[9] M. Gaudin. Sur la loi limite de l'espacement des valeurs propres d'une matrice ale´atoire , 1961 .
[10] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[11] William S. Brown,et al. The alpak system for nonnumerical algebra on a digital computer , 1963 .