Comment on “Lost tsunami” by Maria Teresa Pareschi et al.

] A numerical simulation recently published byPareschi et al. [2006a] (hereinafter referred to asPAR2006) suggests the possible occurrence of a majortsunami that should have hit the eastern Mediterranean inthe early Holocene. The catastrophic collapse of the easternflank of the Etna Volcano that formed the Valle del Bove[Calvari and Groppelli, 1996; Calvari et al., 1998] isreported as the trigger of this tsunami that generated apelagic turbidite nicknamed ‘‘Homogenite’’ [Kastens andCita, 1981] or ‘‘Augias turbidite’’ [Cita et al., 1984; Hieke,1984] throughout the eastern Mediterranean. Since itsdiscovery, this deposit characterized by an acousticallytransparent facies on seismic profiles has been related tothe 3500 years old collapse of the Santorini Caldera[Kastens and Cita, 1981]. Several papers published in thelast 25 years followed this interpretation [see Cita andRimoldi, 2005, and references therein]. So there is a generalagreement about the tsunamigenic origin for the widespreadhomogenite deposits, while a big discrepancy exists be-tween the timing of this event and the formation of the Valledel Bove which cannot be younger than 7600 calibrated yr.B.P. [Calvari and Groppelli, 1996].[

[1]  A. Scheffers,et al.  Tsunami deposits on the coastline of west Crete (Greece) , 2007 .

[2]  M. Favalli,et al.  Lost tsunami , 2006 .

[3]  M. Favalli,et al.  Impact of the Minoan tsunami of Santorini: Simulated scenarios in the eastern Mediterranean , 2006 .

[4]  C. Slomp,et al.  Effects of the Santorini (Thera) eruption on manganese behavior in Holocene sediments of the eastern Mediterranean , 2006 .

[5]  B. Rimoldi,et al.  Prehistoric mega-tsunami in the eastern Mediterranean and its sedimentary response , 2005 .

[6]  S. Kasten,et al.  Different nutrient sources forcing increased productivity during eastern Mediterranean S1 sapropel formation as reflected by calcareous dinoflagellate cysts , 2004 .

[7]  A. Lotter,et al.  Holocene seasonal sea‐surface temperature variations in the southern Adriatic Sea inferred from a multiproxy approach , 2003 .

[8]  N. Combourieu-Nebout,et al.  Coccolithophorid ecostratigraphy and multi-proxy paleoceanographic reconstruction in the Southern Adriatic Sea during the last deglacial time (Core AD91-17) , 2003 .

[9]  F. Storti,et al.  Accretion, structural style and syn-contractional sedimentation in the Eastern Mediterranean Sea , 2002 .

[10]  E. Rohling,et al.  High-resolution geochemical and micropalaeontological profiling of the most recent eastern Mediterranean sapropel , 2001 .

[11]  W. Hieke,et al.  The Augias megaturbidite in the central Ionian Sea (central Mediterranean) and its relation to the Holocene Santorini event , 2000 .

[12]  G. Aloisi,et al.  Acoustic facies of Holocene megaturbidites in the Eastern Mediterranean , 2000 .

[13]  J. Thomson,et al.  Duration of S1, the most recent sapropel in the eastern Mediterranean Sea, as indicated by accelerator mass spectrometry radiocarbon and geochemical evidence , 2000 .

[14]  F. Oldfield,et al.  Palaeoclimate and the Formation of Sapropel S1: Inferences from Late Quaternary Lacustrine and Marine Sequences in the Central Mediterranean Region , 2000 .

[15]  E. Rohling,et al.  Modeling a 200-Yr Interruption of the Holocene Sapropel S 1 , 2000, Quaternary Research.

[16]  G. Lange,et al.  REVIEW OF RECENT ADVANCES IN THE INTERPRETATION OF EASTERN MEDITERRANEAN SAPROPEL S1 FROM GEOCHEMICAL EVIDENCE , 1999 .

[17]  L. Tanner,et al.  Debris-avalanche deposits of the Milo Lahar sequence and the opening of the Valle del bove on Etna volcano (Italy) , 1998 .

[18]  F. Jorissen,et al.  200 Year interruption of Holocene sapropel formation in the Adriatic Sea , 1997, Journal of Micropalaeontology.

[19]  S. Calvari,et al.  Relevance of the Chiancone volcaniclastic deposit in the recent history of Etna Volcano (Italy) , 1996 .

[20]  O. Bar‐Yosef,et al.  Late Quaternary Chronology and Paleoclimates of the Eastern Mediterranean , 1994 .

[21]  E. Guidoboni,et al.  Catalogue of ancient earthquakes in the Mediterranean area up to the 10th century , 1994 .

[22]  F. Jorissen,et al.  Late Quaternary central Mediterranean biochronology , 1993 .

[23]  P. Reimer,et al.  Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program , 1993, Radiocarbon.

[24]  K. van der Borg,et al.  A Late Quaternary Stratigraphic Framework for Eastern Mediterranean Sapropel S1 Based on AMS 14C Dates and Stable Oxygen Isotopes , 1991, Radiocarbon.

[25]  C. V. Grazzini,et al.  Stable isotope “anomalies” in Mediterranean Pleistocene records , 1986 .

[26]  W. Hieke A thick Holocene homogenite from the Ionian Abyssal Plain (eastern Mediterranean) , 1984 .

[27]  K. Kastens,et al.  New findings of Bronze Age homogenites in the Ionian Sea: Geodynamic implications for the Mediterranean , 1984 .

[28]  K. Kastens,et al.  Tsunami-induced sediment transport in the abyssal Mediterranean Sea , 1981 .

[29]  William B. F. Ryan,et al.  Explosive volcanic activity in the Mediterranean over the past 200 , 1978 .

[30]  M. Cita,et al.  STRATIGRAPHY OF EASTERN MEDITERRANEAN SAPROPEL SEQUENCES RECOVERED DURING DSDP LEG 42A AND THEIR PALEOENVIRONMENTAL SIGNIFICANCE , 1978 .