Nonsubjective priors via predictive relative entropy regret

We explore the construction of nonsubjective prior distributions in Bayesian statistics via a posterior predictive relative entropy regret criterion. We carry out a minimax analysis based on a derived asymptotic predictive loss function and show that this approach to prior construction has a number of attractive features. The approach here differs from previous work that uses either prior or posterior relative entropy regret in that we consider predictive performance in relation to alternative nondegenerate prior distributions. The theory is illustrated with an analysis of some specific examples.

[1]  Trevor J. Sweeting,et al.  On the implementation of local probability matching priors for interest parameters , 2005 .

[2]  R. Mukerjee,et al.  Probability Matching Priors: Higher Order Asymptotics , 2004 .

[3]  Feng Liang,et al.  Exact minimax strategies for predictive density estimation, data compression, and model selection , 2002, IEEE Transactions on Information Theory.

[4]  B. Clarkea,et al.  Partial information reference priors : derivation and interpretations , 2003 .

[5]  Trevor J. Sweeting,et al.  Coverage probability bias, objective Bayes and the likelihood principle , 2001 .

[6]  Malay Ghosh,et al.  Bayesian prediction with approximate frequentist validity , 2000 .

[7]  J. Hartigan The maximum likelihood prior , 1998 .

[8]  H. Kuboki Reference priors for prediction , 1998 .

[9]  Dongchu Sun,et al.  Reference priors with partial information , 1998 .

[10]  Tj Sweeting,et al.  Invited discussion of A. R. Barron: Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems , 1998 .

[11]  Andrew R. Barron,et al.  Minimax redundancy for the class of memoryless sources , 1997, IEEE Trans. Inf. Theory.

[12]  F. Komaki On asymptotic properties of predictive distributions , 1996 .

[13]  Trevor J. Sweeting,et al.  Approximate Bayesian computation based on signed roots of log-density ratios (with discussion) , 1996 .

[14]  Purushottam W. Laud,et al.  Predictive Model Selection , 1995 .

[15]  A. Barron,et al.  Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .

[16]  Jayanta K. Ghosh,et al.  Characterization of priors under which Bayesian and frequentist Barlett corrections are equivalent in the multiparameter case , 1991 .

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[19]  L. Tierney,et al.  The validity of posterior expansions based on Laplace''s method , 1990 .

[20]  R. Tibshirani Noninformative priors for one parameter of many , 1989 .

[21]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[22]  P. McCullagh Tensor Methods in Statistics , 1987 .

[23]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[24]  H. Akaike A new look at the Bayes procedure , 1978 .

[25]  J. Aitchison Goodness of prediction fit , 1975 .