The Canada-France deep fields survey-II: Lyman-break galaxies and galaxy clustering at z 3 ?

We present a large sample of z � 3 U band dropout galaxies extracted from the Canada-France deep fields survey (CFDF). Our catalogue covers an effective area of � 1700 arcmin 2 divided between three large, contiguous fields separated widely on the sky. To IAB = 24.5, the survey contains 1294 Lyman-break candidates, in agreement with previous measurements by other authors, after appropriate incompleteness corrections have been applied to our data. Based on comparisons with spectroscopic observations and simulations, we estimate that our sample of Lyman-break galaxies is contaminated by stars and interlopers (lower-redshift galaxies) at no more than � 30%. We find that !(�) is well fitted by a power-law of fixed slope, = 1.8, even at small (� < 10 '' ) angular separations. In two of our three fields, we are able to fit simultaneously for both the slope and amplitude and find = 1.8 ± 0.2 and r0 = (5.3 +6.8 −2.2)h −1 Mpc, and = 1.8 ± 0.3 and r 0 = (6.3 +17.9 −2.8 )h −1 Mpc (all spatially dependent quantities are quoted for a �-flat cosmology). Our data marginally indicates in one field (at a 3� level) that the Lyman-break correlation length r0 depends on sample limiting magnitude: brighter Lyman-break galaxies are more clustered than fainter ones. For the entire CFDF sample, assuming a fixed slope = 1.8 we find r0 = (5.9 ± 0.5)h −1 Mpc. Using these clustering measurements and prediction for the dark matter density field computed assuming cluster-normalised linear theory, we derive a linear bias of b = 3.5±0.3. Finally we show that the dependence of the correlation length with the surface density of Lyman-break galaxies is in good agreement with a simple picture where more luminous galaxies are hosted by more massive dark matter halos with a simple one-to-one correspondence.

[1]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[2]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[3]  M. Bremer,et al.  A quasar in a compact group of galaxies at z = 0.7 , 2002 .

[4]  K. Nandra,et al.  X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field-North Region , 2002, astro-ph/0205215.

[5]  O. Fèvre,et al.  The Canada-United Kingdom Deep Submillimeter Survey. V. The Submillimeter Properties of Lyman Break Galaxies , 2002, astro-ph/0201181.

[6]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[7]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[8]  M. Giavalisco,et al.  The Clustering Properties of Lyman Break Galaxies at Redshift z ~ 3 , 2001, astro-ph/0107447.

[9]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[10]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[11]  S. Okamura,et al.  ApJ Letters, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CLUSTERING PROPERTIES OF GALAXIES AT Z ∼ 4 IN THE SUBARU/XMM DEEP SURVEY FIELD 1 , 2001 .

[12]  Y. Mellier,et al.  The Canada-France deep fields survey - I. 100 000 galaxies, 1 deg$^\mathsf{2}$: A precise measurement of $\mathsf{\omega(\theta)}$ to $I{_{AB}\sim25}$ , 2001, astro-ph/0107526.

[13]  A. Cimatti,et al.  The spatial clustering of distant, z 1, early-type galaxies , 2001, astro-ph/0107340.

[14]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[15]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[16]  U. Davis,et al.  Two-colour photometric selection of high-redshift galaxies , 2001, astro-ph/0103403.

[17]  Mark Dickinson,et al.  Clustering Segregation with Ultraviolet Luminosity in Lyman Break Galaxies at z~3 and Its Implications , 2000, astro-ph/0012249.

[18]  J. Einasto Large scale structure , 2000, astro-ph/0011332.

[19]  R. Wechsler,et al.  Galaxy Formation at z ~ 3: Constraints from Spatial Clustering , 2000, astro-ph/0011261.

[20]  H. McCracken,et al.  Galaxy number counts — V. Ultradeep counts: the Herschel and Hubble Deep Fields , 2000, astro-ph/0010153.

[21]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[22]  H. McCracken,et al.  Galaxy Clustering in the Herschel Deep Field , 2000, astro-ph/0007224.

[23]  P. Hall,et al.  Galaxy Clustering Evolution in the CNOC2 High-Luminosity Sample , 1999, astro-ph/9910250.

[24]  A. Szalay,et al.  Evolution in the Clustering of Galaxies for z < 1.0 , 1999, astro-ph/9907403.

[25]  O. Lahav,et al.  The observed evolution of galaxy clustering versus epoch-dependent biasing models , 1999, astro-ph/9902260.

[26]  S. Maddox,et al.  The redshift evolution of clustering in the Hubble Deep Field , 1999 .

[27]  S. Faber,et al.  Young Galaxies: What Turns Them On? , 1999, astro-ph/9906104.

[28]  S. Maddox,et al.  Spectral analysis of the Stromlo–APM Survey – II. Galaxy luminosity function and clustering by spectral type , 1999, astro-ph/9905385.

[29]  O. Fèvre,et al.  Clustering at High Redshift , 1999, astro-ph/9905314.

[30]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[31]  M. Bershady,et al.  The Distribution of High-Redshift Galaxy Colors: Line-of-Sight Variations in Neutral Hydrogen Absorption , 1999, astro-ph/9901197.

[32]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[33]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[34]  C. Baugh,et al.  Modelling the evolution of galaxy clustering , 1998, astro-ph/9811222.

[35]  A. J. Connolly,et al.  Simultaneous Multicolor Detection of Faint Galaxies in the Hubble Deep Field , 1998, astro-ph/9811086.

[36]  S. White,et al.  The structure and clustering of Lyman-break galaxies , 1998, astro-ph/9807341.

[37]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[38]  M. Dickinson,et al.  The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.

[39]  L. Moscardini,et al.  Modelling galaxy clustering at high redshift , 1997, astro-ph/9712184.

[40]  H. Lin,et al.  Evolution of the Galaxy Population Based on Photometric Redshifts in the Hubble Deep Field , 1996, astro-ph/9610100.

[41]  L. Moscardini,et al.  Redshift evolution of clustering , 1996, astro-ph/9608004.

[42]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[43]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[44]  M. Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996, astro-ph/9604140.

[45]  J. Peacock,et al.  Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.

[46]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[47]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[48]  O. Fèvre,et al.  The Canada France Redshift Survey VIII: Evolution of the clustering of galaxies from z~1 , 1995, astro-ph/9510090.

[49]  O. Fèvre,et al.  The Canada-France Redshift Survey. V. Global Properties of the Sample , 1995, astro-ph/9507014.

[50]  O. Fèvre,et al.  The Canada-France Redshift Survey. I. Introduction to the Survey, Photometric Catalogs, and Surface Brightness Selection Effects , 1995, astro-ph/9507010.

[51]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[52]  S. Maddox,et al.  The Stromlo-APM Redshift Survey II. Variation of Galaxy Clustering with Morphology and Luminosity , 1994 .

[53]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[54]  G. Bernstein The Variance of Correlation Function Estimates , 1994 .

[55]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[56]  Tom Shanks,et al.  The angular correlation function of galaxies with B ~ 25 mag , 1993 .

[57]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[58]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .

[59]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[60]  S. Majewski,et al.  A redshift limit for the faint blue galaxy population from deep U band imaging , 1990 .

[61]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[62]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[63]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[64]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[65]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[66]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[67]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .