Modeling and Bayesian parameter estimation for shape memory alloy bending actuators

In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.

[1]  Abdefihak M. Zoubir,et al.  Bootstrap Methods and Applications , 2007, IEEE Signal Processing Magazine.

[2]  Antti Solonen,et al.  Monte Carlo Methods in Parameter Estimation of Nonlinear Models , 2006 .

[3]  Constantinos Mavroidis,et al.  Mechanical design of a shape memory alloy actuated prosthetic hand. , 2002, Technology and health care : official journal of the European Society for Engineering and Medicine.

[4]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[5]  Stefan Seelecke,et al.  Practical Implementation of Resistance Feedback Measurement for Position Control of a Flexible Smart Inhaler Nozzle , 2010 .

[6]  Ricardo Cao,et al.  An overview of bootstrap methods for estimating and predicting in time series , 1999 .

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  G. Buckner,et al.  Design optimization of a shape memory alloy–actuated robotic catheter , 2012 .

[9]  Gregory D. Buckner,et al.  Modeling the dynamic behavior of a shape memory alloy actuated catheter , 2008 .

[10]  Jennifer C Hannen,et al.  Indirect intelligent sliding mode control of a shape memory alloy actuated flexible beam using hysteretic recurrent neural networks , 2012, Smart materials & structures.

[11]  Stefan Seelecke,et al.  Experimental validation of different methods for controlling a flexible nozzle using embedded SMA wires as both positioning actuator and sensor , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[12]  Abdelhak M. Zoubir,et al.  Bootstrap Methods and Applications : A Tutorial for the Signal Processing Practitioner , 2007 .

[13]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[14]  Dimitris C. Lagoudas,et al.  Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization , 2009 .

[15]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[16]  Gregory D. Buckner,et al.  Data-driven techniques to estimate parameters in the homogenized energy model for shape memory alloys , 2012 .

[17]  Ralph C. Smith Smart Material Systems , 2005 .

[18]  John Hunter Crews,et al.  Development of a Shape Memory Alloy Actuated Robotic Catheter for Endocardial Ablation: Modeling, Design Optimization, and Control. , 2011 .

[19]  William S. Oates,et al.  Statistical parameter estimation for macro fiber composite actuators using the homogenized energy model , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[20]  Zhengzheng Hu,et al.  The homogenized energy model for characterizing polarization and strains in hysteretic ferroelectric materials: Implementation algorithms and data-driven parameter estimation techniques , 2012 .

[21]  Joshua R. Smith,et al.  A Free Energy Model for Hysteresis in Ferroelectric Materials , 2003, Journal of Intelligent Material Systems and Structures.

[22]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[23]  Zhengzheng Hu,et al.  Data-driven techniques to estimate parameters in a rate-dependent ferromagnetic hysteresis model , 2012 .

[24]  Stefan Seelecke,et al.  A unified framework for modeling hysteresis in ferroic materials , 2006 .

[25]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[26]  Dimitris C. Lagoudas,et al.  Development of a shape memory alloy actuated biomimetic vehicle , 2000 .

[27]  M. Dapino,et al.  A homogenized energy framework for ferromagnetic hysteresis , 2006, IEEE Transactions on Magnetics.

[28]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[29]  Dimitris C. Lagoudas,et al.  Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis , 2009 .

[30]  P. Olver Nonlinear Systems , 2013 .