Face detection using artificial neural network approach

A frontal face detection system using artificial neural network is presented. The system used integral image for image representation which allows fast computation of the features used. The system also applies the adaboost learning algorithm to select a small number of critical visual features from a very large set of potential features. Besides that, it also used cascade of classifiers algorithm which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions. Furthermore, a set of experiments in the domain of face detection is presented. The system yields a promising face detection performance.

[1]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[3]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[5]  Donald Geman,et al.  Coarse-to-Fine Face Detection , 2004, International Journal of Computer Vision.