Escape of Lyα and continuum photons from star-forming galaxies

A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy evolution and the cosmic reionization. Here, we investigate the escape of Lya, non-ionizing UV-continuum (l = 1300 - 1600 angstrom in rest frame), and ionizing photons (l 6, but they can maintain the ionization of IGM at z ~ 0 - 5.

[1]  T. Abel,et al.  DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. I. ESCAPE OF IONIZING PHOTONS , 2012, 1210.3361.

[2]  B. Guiderdoni,et al.  Modelling high redshift Lyman-alpha Emitters , 2012, 1202.0610.

[3]  K. Shimasaku,et al.  THE FIRST SYSTEMATIC SURVEY FOR Lyα EMITTERS AT z = 7.3 WITH RED-SENSITIVE SUBARU/SUPRIME-CAM , 2011, 1112.3997.

[4]  R. Ciardullo,et al.  WERE PROGENITORS OF LOCAL L* GALAXIES Lyα EMITTERS AT HIGH REDSHIFT? , 2011, 1112.1031.

[5]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[6]  T. Abel,et al.  ART^2 : Coupling Lyman-alpha Line and Multi-wavelength Continuum Radiative Transfer , 2011, 1109.4891.

[7]  P. Hibon,et al.  SEARCH FOR z ∼ 7 Lyα EMITTERS WITH THE SUPRIME-CAM AT THE SUBARU TELESCOPE , 2011, 1109.3461.

[8]  Robin Ciardullo,et al.  THE EVOLUTION OF Lyα-EMITTING GALAXIES BETWEEN z = 2.1 AND z = 3.1 , 2011, 1109.4685.

[9]  F. I. Pelupessy,et al.  The escape of ionising radiation from high-redshift dwarf galaxies , 2011, 1104.3584.

[10]  S. Okamura,et al.  COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH , 2011, 1104.2330.

[11]  K. Nagamine,et al.  Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.

[12]  Ulrich Hopp,et al.  THE HETDEX PILOT SURVEY. II. THE EVOLUTION OF THE Lyα ESCAPE FRACTION FROM THE ULTRAVIOLET SLOPE AND LUMINOSITY FUNCTION OF 1.9 , 2010, 1011.0430.

[13]  Iap,et al.  ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES , 2010, 1010.4796.

[14]  M. D. Lehnert,et al.  Spectroscopic confirmation of a galaxy at redshift z = 8.6 , 2010, Nature.

[15]  J. Sommer-Larsen,et al.  INTERGALACTIC TRANSMISSION AND ITS IMPACT ON THE Lyα LINE , 2010, 1009.1384.

[16]  A. Fontana,et al.  THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: CONSTRAINTS ON THE LYMAN CONTINUUM ESCAPE FRACTION DISTRIBUTION OF LYMAN-BREAK GALAXIES AT 3.4 < z < 4.5 , 2010, 1009.1140.

[17]  P. Capak,et al.  AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS, , 2010, 1009.1144.

[18]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[19]  M. Wadepuhl,et al.  Satellite galaxies in hydrodynamical simulations of Milky Way sized galaxies , 2010, 1004.3217.

[20]  B. Garilli,et al.  The VIMOS VLT Deep Survey: star formation rate density of Lyα emitters from a sample of 217 galaxies with spectroscopic redshifts 2 ≤ z ≤ 6.6 , 2010, 1003.3480.

[21]  C. Leitherer,et al.  Escape of about five per cent of Lyman-α photons from high-redshift star-forming galaxies , 2010, Nature.

[22]  K. Nagamine,et al.  Escape fraction of ionizing photons from high-redshift galaxies in cosmological SPH simulations , 2010, 1002.3346.

[23]  C. Conselice,et al.  A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.

[24]  C. Steidel,et al.  THE RELATIONSHIP BETWEEN STELLAR POPULATIONS AND Lyα EMISSION IN LYMAN BREAK GALAXIES , 2009, 0911.2000.

[25]  S. Virani,et al.  Lyα-EMITTING GALAXIES AT z = 2.1 IN ECDF-S: BUILDING BLOCKS OF TYPICAL PRESENT-DAY GALAXIES? , 2009, 0910.2244.

[26]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[27]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[28]  L. Cowie,et al.  LOW-REDSHIFT Lyα SELECTED GALAXIES FROM GALEX SPECTROSCOPY: A COMPARISON WITH BOTH UV-CONTINUUM SELECTED GALAXIES AND HIGH-REDSHIFT Lyα EMITTERS,, , 2009, 0909.0031.

[29]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[30]  A. Andersen,et al.  Lyα RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES , 2009, 0907.2698.

[31]  S. Borgani,et al.  Lyman alpha emitter evolution in the reionization epoch , 2009, 0907.0337.

[32]  D. Schaerer,et al.  Empirical Estimate of Lyman-alpha Escape Fraction in a Statistical Sample of Lyman-alpha Emitters , 2009, 0906.5349.

[33]  M. Mori,et al.  The escape of ionizing photons from supernova-dominated primordial galaxies , 2009, 0906.1658.

[34]  J. Sommer-Larsen,et al.  IONIZING RADIATION FROM z = 4–10 GALAXIES , 2009, 0903.2045.

[35]  Tomonori Totani,et al.  Lyα EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION , 2009, 0902.2882.

[36]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[37]  J. Schaye,et al.  Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.

[38]  D. Burgarella,et al.  DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING , 2008, 0805.4012.

[39]  Observatoire de Geneve,et al.  On the Detectability of Lyman-alpha Emission in Star-forming Galaxies: The Role of Dust , 2008, 0805.3501.

[40]  A. Szalay,et al.  Lyα-Emitting Galaxies at 0.2 < z < 0.35 from GALEX Spectroscopy , 2008, 0803.1924.

[41]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[42]  V. Springel,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 03/07/07 LYMAN-α EMITTERS AND LYMAN-BREAK GALAXIES AT Z = 3 − 6 IN COSMOLOGICAL SPH SIMULATIONS , 2022 .

[43]  Iap,et al.  The escape of Lyman photons from a young starburst: the case of Haro 11 , 2007, 0710.2622.

[44]  J. Kneib,et al.  ZEN2: a narrow J-band search for z∼ 9 Lyα emitting galaxies directed towards three lensing clusters , 2007, 0709.1761.

[45]  N. Hathi,et al.  Starburst Intensity Limit of Galaxies at z ≃ 5–6 , 2007, 0709.0520.

[46]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[47]  Takashi Hattori,et al.  Reionization and Galaxy Evolution Probed by z = 7 Lyα Emitters , 2007, 0707.1561.

[48]  Richard S. Ellis,et al.  A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < z < 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization , 2007 .

[49]  Linhua Jiang,et al.  Modeling the Dust Properties of z ~ 6 Quasars with ART2—All-Wavelength Radiative Transfer with Adaptive Refinement Tree , 2007, 0706.3706.

[50]  L. F. Grove,et al.  A multi-wavelength study of z = 3.15 Lyman-α emitters in the GOODS south field , 2007, 0706.1070.

[51]  L. Infante,et al.  Lyα Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field-South , 2007, 0705.3917.

[52]  J. Bolton,et al.  The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization , 2007, astro-ph/0703306.

[53]  J. Kneib,et al.  A Keck Survey for Gravitationally-Lensed Lyman-alpha Emitters in the Redshift Range 8.5 , 2007, astro-ph/0701279.

[54]  T. Morokuma,et al.  A galaxy at a redshift z = 6.96 , 2006, Nature.

[55]  P. Shapiro,et al.  Self-regulated reionization , 2006, astro-ph/0607517.

[56]  Lennox L. Cowie,et al.  High-redshift galaxy populations , 2006, Nature.

[57]  S. Okamura,et al.  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field , 2006, astro-ph/0604149.

[58]  S. White,et al.  Simulations of Cosmic Chemical Enrichment , 2006, Proceedings of the International Astronomical Union.

[59]  Mamoru Doi,et al.  Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.

[60]  Xiaohui Fan,et al.  Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.

[61]  S. Oh,et al.  Lyman α radiative transfer in a multiphase medium , 2005, astro-ph/0507586.

[62]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[63]  Armenia,et al.  HST/ACS Lyman α imaging of the nearby starburst ESO 338-IG04 , 2005, astro-ph/0503320.

[64]  H. Spinrad,et al.  Spectroscopic Properties of the z ≈ 4.5 Lyα Emitters , 2004, astro-ph/0409090.

[65]  E. al.,et al.  The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6 , 2004, astro-ph/0407542.

[66]  James Rhoads,et al.  Luminosity Functions of Lyα Emitters at Redshifts z = 6.5 and z = 5.7: Evidence against Reionization at z ≤ 6.5 , 2004, astro-ph/0407408.

[67]  S. Djorgovski,et al.  A Galaxy at z = 6.545 and Constraints on the Epoch of Reionization , 2004, astro-ph/0407409.

[68]  Claus Leitherer,et al.  The First Deep Advanced Camera for Surveys Lyα Images of Local Starburst Galaxies , 2003 .

[69]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[70]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[71]  C. Leitherer,et al.  The First Deep ACS Lyman alpha Images of Local Starburst Galaxies , 2003, astro-ph/0307555.

[72]  S. Djorgovski,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003, astro-ph/0305314.

[73]  C. Ledoux,et al.  The Building the Bridge survey for z =3 Lyα emitting galaxies I. Method and first results , 2003, astro-ph/0305282.

[74]  S. Phleps,et al.  Constraints to the evolution of Ly-α bright galaxies between z = 3 and z = 6 , 2003, astro-ph/0302113.

[75]  E. al.,et al.  The Discovery of Two Lyman α Emitters beyond Redshift 6 in the Subaru Deep Field , 2003 .

[76]  Arjun Dey,et al.  Spectroscopic Confirmation of Three Redshift z ≈ 5.7 Lyα Emitters from the Large-Area Lyman Alpha Survey , 2002, astro-ph/0209544.

[77]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[78]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[79]  J. Kneib,et al.  A Redshift z = 6.56 Galaxy behind the Cluster Abell 370 , 2002, astro-ph/0203091.

[80]  S. Okamura,et al.  Subaru Deep Survey. II. Luminosity Functions and Clustering Properties of Lyα Emitters at z = 4.86 in the Subaru Deep Field , 2002, astro-ph/0202204.

[81]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[82]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[83]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[84]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[85]  H. Spinrad,et al.  First Results from the Large-Area Lyman Alpha Survey , 1999, astro-ph/0003465.

[86]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[87]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[88]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[89]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[90]  R. Davé,et al.  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[91]  L. Cowie,et al.  High-z Lyα Emitters. I. A Blank-Field Search for Objects near Redshift z = 3.4 in and around the Hubble Deep Field and the Hawaii Deep Field SSA 22 , 1998, astro-ph/9801003.

[92]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[93]  L. Hui,et al.  Equation of state of the photoionized intergalactic medium , 1996, astro-ph/9612232.

[94]  R. McMahon,et al.  Detection of Lyman-α-emitting galaxies at redshift 4.55 , 1996, Nature.

[95]  D. Weinberg,et al.  Damped Lyman-Alpha and Lyman-Limit Absorbers in the Cold Dark Matter Model , 1995, astro-ph/9509106.

[96]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[97]  D. Neufeld The Escape of Lyman-Alpha Radiation from a Multiphase Interstellar Medium , 1991 .

[98]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[99]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[100]  M. Schmidt The Rate of Star Formation , 1959 .

[101]  S. Okamura,et al.  COMPLETING THE CENSUS OF Ly alpha EMITTERS AT THE REIONIZATION EPOCH , 2011 .

[102]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[103]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[104]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[105]  R. B. Partridge,et al.  Are Young Galaxies Visible , 1967 .

[106]  E. Salpeter The Luminosity function and stellar evolution , 1955 .