Escape of Lyα and continuum photons from star-forming galaxies
暂无分享,去创建一个
T. Abel | Qirong Zhu | Yue-xing Li | C. Gronwall | Stanford University | H. Yajima | P. S. University | R. J. U. O. Edinburgh | Tom Abel | S. University
[1] T. Abel,et al. DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. I. ESCAPE OF IONIZING PHOTONS , 2012, 1210.3361.
[2] B. Guiderdoni,et al. Modelling high redshift Lyman-alpha Emitters , 2012, 1202.0610.
[3] K. Shimasaku,et al. THE FIRST SYSTEMATIC SURVEY FOR Lyα EMITTERS AT z = 7.3 WITH RED-SENSITIVE SUBARU/SUPRIME-CAM , 2011, 1112.3997.
[4] R. Ciardullo,et al. WERE PROGENITORS OF LOCAL L* GALAXIES Lyα EMITTERS AT HIGH REDSHIFT? , 2011, 1112.1031.
[5] J. Schaye,et al. The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.
[6] T. Abel,et al. ART^2 : Coupling Lyman-alpha Line and Multi-wavelength Continuum Radiative Transfer , 2011, 1109.4891.
[7] P. Hibon,et al. SEARCH FOR z ∼ 7 Lyα EMITTERS WITH THE SUPRIME-CAM AT THE SUBARU TELESCOPE , 2011, 1109.3461.
[8] Robin Ciardullo,et al. THE EVOLUTION OF Lyα-EMITTING GALAXIES BETWEEN z = 2.1 AND z = 3.1 , 2011, 1109.4685.
[9] F. I. Pelupessy,et al. The escape of ionising radiation from high-redshift dwarf galaxies , 2011, 1104.3584.
[10] S. Okamura,et al. COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH , 2011, 1104.2330.
[11] K. Nagamine,et al. Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.
[12] Ulrich Hopp,et al. THE HETDEX PILOT SURVEY. II. THE EVOLUTION OF THE Lyα ESCAPE FRACTION FROM THE ULTRAVIOLET SLOPE AND LUMINOSITY FUNCTION OF 1.9 , 2010, 1011.0430.
[13] Iap,et al. ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES , 2010, 1010.4796.
[14] M. D. Lehnert,et al. Spectroscopic confirmation of a galaxy at redshift z = 8.6 , 2010, Nature.
[15] J. Sommer-Larsen,et al. INTERGALACTIC TRANSMISSION AND ITS IMPACT ON THE Lyα LINE , 2010, 1009.1384.
[16] A. Fontana,et al. THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: CONSTRAINTS ON THE LYMAN CONTINUUM ESCAPE FRACTION DISTRIBUTION OF LYMAN-BREAK GALAXIES AT 3.4 < z < 4.5 , 2010, 1009.1140.
[17] P. Capak,et al. AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS, , 2010, 1009.1144.
[18] S. Okamura,et al. STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.
[19] M. Wadepuhl,et al. Satellite galaxies in hydrodynamical simulations of Milky Way sized galaxies , 2010, 1004.3217.
[20] B. Garilli,et al. The VIMOS VLT Deep Survey: star formation rate density of Lyα emitters from a sample of 217 galaxies with spectroscopic redshifts 2 ≤ z ≤ 6.6 , 2010, 1003.3480.
[21] C. Leitherer,et al. Escape of about five per cent of Lyman-α photons from high-redshift star-forming galaxies , 2010, Nature.
[22] K. Nagamine,et al. Escape fraction of ionizing photons from high-redshift galaxies in cosmological SPH simulations , 2010, 1002.3346.
[23] C. Conselice,et al. A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.
[24] C. Steidel,et al. THE RELATIONSHIP BETWEEN STELLAR POPULATIONS AND Lyα EMISSION IN LYMAN BREAK GALAXIES , 2009, 0911.2000.
[25] S. Virani,et al. Lyα-EMITTING GALAXIES AT z = 2.1 IN ECDF-S: BUILDING BLOCKS OF TYPICAL PRESENT-DAY GALAXIES? , 2009, 0910.2244.
[26] S. White,et al. How do galaxies populate dark matter haloes , 2009, 0909.4305.
[27] M. Franx,et al. UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.
[28] L. Cowie,et al. LOW-REDSHIFT Lyα SELECTED GALAXIES FROM GALEX SPECTROSCOPY: A COMPARISON WITH BOTH UV-CONTINUUM SELECTED GALAXIES AND HIGH-REDSHIFT Lyα EMITTERS,, , 2009, 0909.0031.
[29] S. M. Fall,et al. LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.
[30] A. Andersen,et al. Lyα RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES , 2009, 0907.2698.
[31] S. Borgani,et al. Lyman alpha emitter evolution in the reionization epoch , 2009, 0907.0337.
[32] D. Schaerer,et al. Empirical Estimate of Lyman-alpha Escape Fraction in a Statistical Sample of Lyman-alpha Emitters , 2009, 0906.5349.
[33] M. Mori,et al. The escape of ionizing photons from supernova-dominated primordial galaxies , 2009, 0906.1658.
[34] J. Sommer-Larsen,et al. IONIZING RADIATION FROM z = 4–10 GALAXIES , 2009, 0903.2045.
[35] Tomonori Totani,et al. Lyα EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION , 2009, 0902.2882.
[36] Durham,et al. The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.
[37] J. Schaye,et al. Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.
[38] D. Burgarella,et al. DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING , 2008, 0805.4012.
[39] Observatoire de Geneve,et al. On the Detectability of Lyman-alpha Emission in Star-forming Galaxies: The Role of Dust , 2008, 0805.3501.
[40] A. Szalay,et al. Lyα-Emitting Galaxies at 0.2 < z < 0.35 from GALEX Spectroscopy , 2008, 0803.1924.
[41] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[42] V. Springel,et al. Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 03/07/07 LYMAN-α EMITTERS AND LYMAN-BREAK GALAXIES AT Z = 3 − 6 IN COSMOLOGICAL SPH SIMULATIONS , 2022 .
[43] Iap,et al. The escape of Lyman photons from a young starburst: the case of Haro 11 , 2007, 0710.2622.
[44] J. Kneib,et al. ZEN2: a narrow J-band search for z∼ 9 Lyα emitting galaxies directed towards three lensing clusters , 2007, 0709.1761.
[45] N. Hathi,et al. Starburst Intensity Limit of Galaxies at z ≃ 5–6 , 2007, 0709.0520.
[46] S. Okamura,et al. The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.
[47] Takashi Hattori,et al. Reionization and Galaxy Evolution Probed by z = 7 Lyα Emitters , 2007, 0707.1561.
[48] Richard S. Ellis,et al. A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < z < 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization , 2007 .
[49] Linhua Jiang,et al. Modeling the Dust Properties of z ~ 6 Quasars with ART2—All-Wavelength Radiative Transfer with Adaptive Refinement Tree , 2007, 0706.3706.
[50] L. F. Grove,et al. A multi-wavelength study of z = 3.15 Lyman-α emitters in the GOODS south field , 2007, 0706.1070.
[51] L. Infante,et al. Lyα Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field-South , 2007, 0705.3917.
[52] J. Bolton,et al. The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization , 2007, astro-ph/0703306.
[53] J. Kneib,et al. A Keck Survey for Gravitationally-Lensed Lyman-alpha Emitters in the Redshift Range 8.5 , 2007, astro-ph/0701279.
[54] T. Morokuma,et al. A galaxy at a redshift z = 6.96 , 2006, Nature.
[55] P. Shapiro,et al. Self-regulated reionization , 2006, astro-ph/0607517.
[56] Lennox L. Cowie,et al. High-redshift galaxy populations , 2006, Nature.
[57] S. Okamura,et al. The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field , 2006, astro-ph/0604149.
[58] S. White,et al. Simulations of Cosmic Chemical Enrichment , 2006, Proceedings of the International Astronomical Union.
[59] Mamoru Doi,et al. Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.
[60] Xiaohui Fan,et al. Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.
[61] S. Oh,et al. Lyman α radiative transfer in a multiphase medium , 2005, astro-ph/0507586.
[62] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[63] Armenia,et al. HST/ACS Lyman α imaging of the nearby starburst ESO 338-IG04 , 2005, astro-ph/0503320.
[64] H. Spinrad,et al. Spectroscopic Properties of the z ≈ 4.5 Lyα Emitters , 2004, astro-ph/0409090.
[65] E. al.,et al. The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6 , 2004, astro-ph/0407542.
[66] James Rhoads,et al. Luminosity Functions of Lyα Emitters at Redshifts z = 6.5 and z = 5.7: Evidence against Reionization at z ≤ 6.5 , 2004, astro-ph/0407408.
[67] S. Djorgovski,et al. A Galaxy at z = 6.545 and Constraints on the Epoch of Reionization , 2004, astro-ph/0407409.
[68] Claus Leitherer,et al. The First Deep Advanced Camera for Surveys Lyα Images of Local Starburst Galaxies , 2003 .
[69] S. Okamura,et al. Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.
[70] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[71] C. Leitherer,et al. The First Deep ACS Lyman alpha Images of Local Starburst Galaxies , 2003, astro-ph/0307555.
[72] S. Djorgovski,et al. The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003, astro-ph/0305314.
[73] C. Ledoux,et al. The Building the Bridge survey for z =3 Lyα emitting galaxies I. Method and first results , 2003, astro-ph/0305282.
[74] S. Phleps,et al. Constraints to the evolution of Ly-α bright galaxies between z = 3 and z = 6 , 2003, astro-ph/0302113.
[75] E. al.,et al. The Discovery of Two Lyman α Emitters beyond Redshift 6 in the Subaru Deep Field , 2003 .
[76] Arjun Dey,et al. Spectroscopic Confirmation of Three Redshift z ≈ 5.7 Lyα Emitters from the Large-Area Lyman Alpha Survey , 2002, astro-ph/0209544.
[77] V. Springel,et al. Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.
[78] V. Springel,et al. Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.
[79] J. Kneib,et al. A Redshift z = 6.56 Galaxy behind the Cluster Abell 370 , 2002, astro-ph/0203091.
[80] S. Okamura,et al. Subaru Deep Survey. II. Luminosity Functions and Clustering Properties of Lyα Emitters at z = 4.86 in the Subaru Deep Field , 2002, astro-ph/0202204.
[81] J. Weingartner,et al. Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .
[82] P. Ferrara. Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.
[83] V. Springel,et al. GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.
[84] C. C. Steidel,et al. Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.
[85] H. Spinrad,et al. First Results from the Large-Area Lyman Alpha Survey , 1999, astro-ph/0003465.
[86] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[87] M. Giavalisco,et al. Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.
[88] Martin J. Rees,et al. Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.
[89] Jr.,et al. STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[90] R. Davé,et al. The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.
[91] L. Cowie,et al. High-z Lyα Emitters. I. A Blank-Field Search for Objects near Redshift z = 3.4 in and around the Hubble Deep Field and the Hawaii Deep Field SSA 22 , 1998, astro-ph/9801003.
[92] G. Bryan,et al. Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.
[93] L. Hui,et al. Equation of state of the photoionized intergalactic medium , 1996, astro-ph/9612232.
[94] R. McMahon,et al. Detection of Lyman-α-emitting galaxies at redshift 4.55 , 1996, Nature.
[95] D. Weinberg,et al. Damped Lyman-Alpha and Lyman-Limit Absorbers in the Cold Dark Matter Model , 1995, astro-ph/9509106.
[96] P. Madau,et al. Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.
[97] D. Neufeld. The Escape of Lyman-Alpha Radiation from a Multiphase Interstellar Medium , 1991 .
[98] L. Hernquist,et al. TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .
[99] Bruce A. Peterson,et al. On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .
[100] M. Schmidt. The Rate of Star Formation , 1959 .
[101] S. Okamura,et al. COMPLETING THE CENSUS OF Ly alpha EMITTERS AT THE REIONIZATION EPOCH , 2011 .
[102] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .
[103] C. Frenk,et al. The Aquarius Project : the subhalos of galactic halos , 2008 .
[104] D. Osterbrock,et al. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .
[105] R. B. Partridge,et al. Are Young Galaxies Visible , 1967 .
[106] E. Salpeter. The Luminosity function and stellar evolution , 1955 .