Predictability and Error Growth Dynamics in Cloud-Resolving Models

Abstract While the benefits of ensemble techniques over deterministic numerical weather predictions (NWP) are now widely recognized, the prospects of ensemble prediction systems (EPS) at high computational resolution are still largely unclear. Difficulties arise due to the poor knowledge of the mechanisms promoting rapid perturbation growth and propagation, as well as the role of nonlinearities. In this study, the dynamics associated with the growth and propagation of initial uncertainties is investigated by means of real-case high-resolution (cloud resolving) NWP integrations. The considered case is taken from the Mesoscale Alpine Programme intensive observing period 3 (MAP IOP3) and involves convection of intermediate intensity. To assess the underlying mechanisms and the degree of linearity upon the predictability of the flow, vastly different initial perturbation methodologies are compared, while all simulations use identical lateral boundary conditions to mimic a perfectly predictable synoptic-scale ...

[1]  Christoph Schär,et al.  Convection-resolving precipitation forecasting and its predictability in Alpine river catchments , 2004 .

[2]  Kenneth J. Westrick,et al.  Does Increasing Horizontal Resolution Produce More Skillful Forecasts , 2002 .

[3]  E. Kalnay,et al.  Ensemble Forecasting at NCEP and the Breeding Method , 1997 .

[4]  E. Grimit,et al.  Initial Results of a Mesoscale Short-Range Ensemble Forecasting System over the Pacific Northwest , 2002 .

[5]  Christoph Schär,et al.  Predictability of Precipitation in a Cloud-Resolving Model , 2004 .

[6]  Richard Rotunno,et al.  Lessons on orographic precipitation from the Mesoscale Alpine Programme , 2007 .

[7]  F. Molteni,et al.  A strategy for high‐resolution ensemble prediction. I: Definition of representative members and global‐model experiments , 2001 .

[8]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[9]  Chris Snyder,et al.  Mesoscale Predictability of the “Surprise” Snowstorm of 24–25 January 2000 , 2002 .

[10]  Michael Sprenger,et al.  The Real-Time Ultrafinescale Forecast Support during the Special Observing Period of the MAP , 2002 .

[11]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[12]  David J. Stensrud,et al.  Explicit Cloud-Scale Models for Operational Forecasts: A Note of Caution , 2002 .

[13]  Michel Chong,et al.  Dynamics and microphysics of orographic precipitation during MAP IOP3 , 2005 .

[14]  Rossella Ferretti,et al.  Data assimilation of high‐density observations. II: Impact on the forecast of the precipitation for the MAP/SOP IOP2b , 2005 .

[15]  J. Molinari,et al.  Parameterization of Convective Precipitation in Mesoscale Numerical Models: A Critical Review , 1992 .

[16]  P. L. Houtekamer,et al.  A System Simulation Approach to Ensemble Prediction , 1996 .

[17]  Ming Xue,et al.  Sensitivity Analysis of Convection of the 24 May 2002 IHOP Case Using Very Large Ensembles , 2006 .

[18]  J. Steppeler,et al.  Meso-gamma scale forecasts using the nonhydrostatic model LM , 2003 .

[19]  N. A. Crook Sensitivity of Moist Convection Forced by Boundary Layer Processes to Low-Level Thermodynamic Fields , 1996 .

[20]  René Laprise,et al.  Predictability of a Nested Limited-Area Model , 2000 .

[21]  E. Lorenz The predictability of a flow which possesses many scales of motion , 1969 .

[22]  Charles A. Doswell,et al.  On the Use of Mesoscale and Cloud-Scale Models in Operational Forecasting , 1992 .

[23]  Douglas K. Lilly,et al.  Numerical prediction of thunderstorms—has its time come? , 1990 .

[24]  Peter Lynch,et al.  The Dolph-Chebyshev Window: A Simple Optimal Filter , 1997 .

[25]  Clifford F. Mass,et al.  Structure, Growth Rates, and Tangent Linear Accuracy of Adjoint Sensitivities with Respect to Horizontal and Vertical Resolution , 2006 .

[26]  Juanzhen Sun,et al.  Convective‐scale assimilation of radar data: progress and challenges , 2005 .

[27]  M. Baldwin,et al.  THE WGNE ASSESSMENT OF SHORT-TERM QUANTITATIVE PRECIPITATION FORECASTS , 2003 .

[28]  R. Houze,et al.  The MAP special observing period , 2001 .

[29]  W. J. Steenburgh,et al.  High-Resolution Simulations and Microphysical Validation of an Orographic Precipitation Event over the Wasatch Mountains during IPEX IOP3 , 2005 .

[30]  J. Michael Fritsch,et al.  Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy , 2004 .

[31]  Véronique Ducrocq,et al.  Initialization of a fine‐scale model for convective‐system prediction: A case study , 2000 .

[32]  C. Schär,et al.  Embedded Cellular Convection in Moist Flow past Topography , 2005 .

[33]  Tiziana Paccagnella,et al.  The COSMO-LEPS mesoscale ensemble system: validation of the methodology and verification , 2005 .

[34]  R. Treadon,et al.  A Tutorial on Lateral Boundary Conditions as a Basic and Potentially Serious Limitation to Regional Numerical Weather Prediction , 1997 .

[35]  G. Zängl,et al.  Quantitative precipitation forecasting in the Alps: The advances achieved by the Mesoscale Alpine Programme , 2007 .

[36]  Fuqing Zhang,et al.  Mesoscale predictability of an extreme warm-season precipitation event , 2006 .

[37]  Fuqing Zhang A multistage error growth conceptual model for mesoscale predictability , 2005 .

[38]  S. J. Weiss,et al.  Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather : The SPC/NSSL spring program 2004 , 2006 .

[39]  Franco Molteni,et al.  Predictability and finite‐time instability of the northern winter circulation , 1993 .

[40]  Peter R. Bannon,et al.  Wave Response during Hydrostatic and Geostrophic Adjustment. Part I: Transient Dynamics , 2005 .

[41]  K. Droegemeier,et al.  Multiresolution Ensemble Forecasts of an Observed Tornadic Thunderstorm System. Part I: Comparsion of Coarse- and Fine-Grid Experiments , 2006 .

[42]  R. Rotunno,et al.  Effects of Moist Convection on Mesoscale Predictability , 2003 .

[43]  W. Skamarock Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra , 2004 .

[44]  Leonard A. Smith,et al.  Linear Regime Duration: Is 24 Hours a Long Time in Synoptic Weather Forecasting? , 2001 .

[45]  T. Palmer Predicting uncertainty in forecasts of weather and climate , 2000 .

[46]  D. Stensrud,et al.  Mesoscale Convective Systems in Weakly Forced Large-Scale Environments. Part III: Numerical Simulations and Implications for Operational Forecasting , 1994 .

[47]  Frédéric Fabry,et al.  The Spatial Variability of Moisture in the Boundary Layer and Its Effect on Convection Initiation: Project-Long Characterization , 2006 .

[48]  Cathy Hohenegger,et al.  Predictability Mysteries in Cloud-Resolving Models , 2006 .

[49]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[50]  Roberto Buizza,et al.  A strategy for high‐resolution ensemble prediction. II: Limited‐area experiments in four Alpine flood events , 2001 .

[51]  Seon Ki Park,et al.  Sensitivity Analysis of a 3D Convective Storm: Implications for Variational Data Assimilation and Forecast Error , 2000 .

[52]  M. Ehrendorfer Vorhersage der Unsicherheit numerischer Wetterprognosen: eine Übersicht , 1997 .

[53]  E. Lorenz,et al.  The predictability of a flow which possesses many scales of motion , 1969 .