Crystal Symmetry Breaking in Few-Quintuple Bismuth Telluride Films: Applications in Nanometrology of Topological Insulators

We report results of micro-Raman spectroscopy investigation of the "graphene-like" mechanically exfoliated single-crystal bismuth telluride films with the thickness ranging from a few-nm-range to bulk limit. It is found that the optical phonon mode A1u, which is not-Raman active in bulk bismuth telluride crystals, appears in the atomically-thin films due to crystal-symmetry breaking. The intensity ratios of the out-of-plane A1u and A1g modes to the in-plane Eg mode grow with decreasing film thickness. The evolution of Raman signatures with the film thickness can be used for identification of bismuth telluride crystals with the thickness of few-quintuple layers, which are important for topological insulator and thermoelectric applications.

[1]  C. N. Lau,et al.  Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices , 2007 .

[2]  W. Richter,et al.  Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and Raman Active Lattice Vibrations in Bi2Te3 , 1984, September 1.

[3]  D. Teweldebrhan,et al.  Atomically-thin crystalline films and ribbons of bismuth telluride , 2010 .

[4]  J. Correia,et al.  Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation , 2010 .

[5]  Guanxiong Liu,et al.  Ultraviolet Raman microscopy of single and multilayer graphene , 2009, 0903.1922.

[6]  Robert A. Barton,et al.  Free-standing epitaxial graphene. , 2009, Nano letters.

[7]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[8]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[9]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[10]  Z. Dashevsky,et al.  Highly textured Bi2Te3-based materials for thermoelectric energy conversion , 2007 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[13]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[14]  W. Richter,et al.  A Raman and far‐infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x < 1), (Bi1−ySby)2Te3 (0 < y < 1) , 1977 .

[15]  Andrew G. Glen,et al.  APPL , 2001 .

[16]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[17]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[18]  M. Cardona,et al.  Fundamentals of semiconductors : physics and materials properties , 1997 .

[19]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[20]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[21]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[22]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[23]  V. Russo,et al.  Raman spectroscopy of Bi‐Te thin films , 2008 .

[24]  Graphene-on-Sapphire and Graphene-on-Glass: Raman Spectroscopy Study , 2007, 0710.2369.

[25]  G. Dolling,et al.  Lattice vibrations of Bi2Te3 , 1978 .

[26]  Vivek Goyal,et al.  Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. , 2010, Nano letters.

[27]  Hyunhyub Ko,et al.  Strain‐Sensitive Raman Modes of Carbon Nanotubes in Deflecting Freely Suspended Nanomembranes , 2005 .