Phylogeny Estimation and Hypothesis Testing Using Maximum Likelihood

One of the strengths of the maximum likelihood method of phylogenetic estimation is the ease with which hypotheses can be formulated and tested. Maximum likelihood analysis of DNA and amino acid sequence data has been made practical with recent advances in models of DNA substitution, computer programs, and computational speed. Here, we describe the maximum likelihood method and the recent improvements in models of substitution. We also describe how likelihood ratio tests of a variety of biological hypotheses can be formulated and tested using computer simulation to generate the null distribution of the likelihood ratio test statistic.

[1]  J. Huelsenbeck,et al.  Effect of nonindependent substitution on phylogenetic accuracy. , 1999, Systematic biology.

[2]  J. Huelsenbeck,et al.  Base compositional bias and phylogenetic analyses: a test of the "flying DNA" hypothesis. , 1998, Molecular phylogenetics and evolution.

[3]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[4]  R. Nielsen A likelihood approach to populations samples of microsatellite alleles. , 1997, Genetics.

[5]  D M Hillis,et al.  Biology Recapitulates Phylogeny , 1997, Science.

[6]  Ziheng Yang,et al.  STATISTICAL TESTS OF HOST‐PARASITE COSPECIATION , 1997, Evolution; international journal of organic evolution.

[7]  W. Messier,et al.  Episodic adaptive evolution of primate lysozymes , 1997, Nature.

[8]  P. Sharp,et al.  In search of molecular darwinism , 1997, Nature.

[9]  K. Lange Reconstruction of Evolutionary Trees , 1997 .

[10]  D. Guttman,et al.  Recombination and clonality in natural populations of Escherichia coli. , 1997, Trends in ecology & evolution.

[11]  David L. Swofford,et al.  THE TOPOLOGY-DEPENDENT PERMUTATION TEST FOR MONOPHYLY DOES NOT TEST FOR MONOPHYLY , 1996 .

[12]  J. Huelsenbeck,et al.  A Likelihood-Ratio Test of Monophyly , 1996 .

[13]  W. Bruno Modeling residue usage in aligned protein sequences via maximum likelihood. , 1996, Molecular biology and evolution.

[14]  C. Thacker,et al.  RATES OF MOLECULAR EVOLUTION: Phylogenetic Issues and Applications , 1996 .

[15]  Z. Yang,et al.  Among-site rate variation and its impact on phylogenetic analyses. , 1996, Trends in ecology & evolution.

[16]  David C. Jones,et al.  Combining protein evolution and secondary structure. , 1996, Molecular biology and evolution.

[17]  R. DeSalle,et al.  GENE TREES, SPECIES TREES, AND SYSTEMATICS: A Cladistic Perspective , 1996 .

[18]  John P. Huelsenbeck,et al.  A Likelihood Ratio Test to Detect Conflicting Phylogenetic Signal , 1996 .

[19]  J. Felsenstein,et al.  A Hidden Markov Model approach to variation among sites in rate of evolution. , 1996, Molecular biology and evolution.

[20]  S. Muse,et al.  Estimating synonymous and nonsynonymous substitution rates. , 1996, Molecular biology and evolution.

[21]  C. Peters,et al.  Naturally occurring Sin Nombre virus genetic reassortants. , 1995, Virology.

[22]  Arndt von Haeseler,et al.  PERFORMANCE OF THE MAXIMUM LIKELIHOOD, NEIGHBOR JOINING, AND MAXIMUM PARSIMONY METHODS WHEN SEQUENCE SITES ARE NOT INDEPENDENT , 1995 .

[23]  A. Rzhetsky Estimating substitution rates in ribosomal RNA genes. , 1995, Genetics.

[24]  Nick Goldman,et al.  MAXIMUM LIKELIHOOD TREES FROM DNA SEQUENCES: A PECULIAR STATISTICAL ESTIMATION PROBLEM , 1995 .

[25]  J. Huelsenbeck The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. , 1995, Molecular biology and evolution.

[26]  M. P. Cummings,et al.  Sampling properties of DNA sequence data in phylogenetic analysis. , 1995, Molecular biology and evolution.

[27]  Jon A Yamato,et al.  Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. , 1995, Genetics.

[28]  W. Li,et al.  Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. , 1995, Molecular biology and evolution.

[29]  J. Huelsenbeck Performance of Phylogenetic Methods in Simulation , 1995 .

[30]  S. Muse Evolutionary analyses of DNA sequences subject to constraints of secondary structure. , 1995, Genetics.

[31]  Z. Yang,et al.  A space-time process model for the evolution of DNA sequences. , 1995, Genetics.

[32]  A Rzhetsky,et al.  Tests of applicability of several substitution models for DNA sequence data. , 1995, Molecular biology and evolution.

[33]  P. Lewis,et al.  Success of maximum likelihood phylogeny inference in the four-taxon case. , 1995, Molecular biology and evolution.

[34]  Robert C. Griffiths,et al.  Simulating Probability Distributions in the Coalescent , 1994 .

[35]  Paul H. Harvey,et al.  Phylogenetic epidemiology lives. , 1994, Trends in ecology & evolution.

[36]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[37]  Ziheng Yang Statistical Properties of the Maximum Likelihood Method of Phylogenetic Estimation and Comparison With Distance Matrix Methods , 1994 .

[38]  A. von Haeseler,et al.  A stochastic model for the evolution of autocorrelated DNA sequences. , 1994, Molecular phylogenetics and evolution.

[39]  S. Muse,et al.  A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. , 1994, Molecular biology and evolution.

[40]  B. Weir,et al.  Detecting substitution-rate heterogeneity among regions of a nucleotide sequence. , 1994, Molecular biology and evolution.

[41]  K. Crandall Intraspecific Cladogram Estimation: Accuracy at Higher Levels of Divergence , 1994 .

[42]  J. Felsenstein,et al.  A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. , 1994, Molecular biology and evolution.

[43]  M. Nei,et al.  Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. , 1994, Molecular biology and evolution.

[44]  N. Goldman,et al.  Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. , 1994, Molecular biology and evolution.

[45]  Z. Yang,et al.  Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.

[46]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[47]  J. Huelsenbeck,et al.  SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .

[48]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[49]  N. Bianchi,et al.  Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. , 1993, Molecular biology and evolution.

[50]  A. Meyer,et al.  Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences , 1993, Nature.

[51]  D. Hillis,et al.  Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. , 1993, Molecular biology and evolution.

[52]  B S Weir,et al.  Testing for equality of evolutionary rates. , 1992, Genetics.

[53]  G. Learn,et al.  Constraints on the evolution of plastid introns: the group II intron in the gene encoding tRNA-Val(UAC). , 1992, Molecular biology and evolution.

[54]  M. Miyamoto,et al.  Testing phylogenetic approaches with empirical data, as illustrated with the parsimony method. , 1992, Molecular biology and evolution.

[55]  G A Churchill,et al.  Sample size for a phylogenetic inference. , 1992, Molecular biology and evolution.

[56]  M. Goodman,et al.  A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. , 1992, Molecular phylogenetics and evolution.

[57]  M. Hasegawa,et al.  Amino acid substitution of proteins coded for in mitochondrial DNA during mammalian evolution. , 1992, Idengaku zasshi.

[58]  J. Mullins,et al.  Molecular Epidemiology of HIV Transmission in a Dental Practice , 1992, Science.

[59]  Winston A Hide,et al.  The biochemical phylogeny of guinea-pigs and gundis, and the paraphyly of the order rodentia. , 1992, Comparative biochemistry and physiology. B, Comparative biochemistry.

[60]  D Penny,et al.  Progress with methods for constructing evolutionary trees. , 1992, Trends in ecology & evolution.

[61]  J. Bull,et al.  Experimental phylogenetics: generation of a known phylogeny. , 1992, Science.

[62]  D. Penny The comparative method in evolutionary biology , 1992 .

[63]  M. Miyamoto,et al.  PERSPECTIVE Testing Phylogenetic Approaches with Empirical Data, as Illustrated with the Parsimony Method1 , 1992 .

[64]  Daniel R. Brooks,et al.  Phylogeny, Ecology, and Behavior , 1992 .

[65]  L. C. Rutledge,et al.  Genetic Data Analysis , 1991 .

[66]  Dan Graur,et al.  Is the guinea-pig a rodent? , 1991, Nature.

[67]  G A Churchill,et al.  Methods for inferring phylogenies from nucleic acid sequence data by using maximum likelihood and linear invariants. , 1991, Molecular biology and evolution.

[68]  Nick Goldman,et al.  MAXIMUM LIKELIHOOD INFERENCE OF PHYLOGENETIC TREES, WITH SPECIAL REFERENCE TO A POISSON PROCESS MODEL OF DNA SUBSTITUTION AND TO PARSIMONY ANALYSES , 1990 .

[69]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[70]  L. Jin,et al.  Limitations of the evolutionary parsimony method of phylogenetic analysis. , 1990, Molecular biology and evolution.

[71]  N. Saitou,et al.  Relative Efficiencies of the Fitch-Margoliash, Maximum-Parsimony, Maximum-Likelihood, Minimum-Evolution, and Neighbor-joining Methods of Phylogenetic Tree Construction in Obtaining the Correct Tree , 1989 .

[72]  M. Gouy,et al.  Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree , 1989, Nature.

[73]  G. Churchill Stochastic models for heterogeneous DNA sequences. , 1989, Bulletin of mathematical biology.

[74]  R. Lewontin,et al.  Inferring the number of evolutionary events from DNA coding sequence differences. , 1989, Molecular biology and evolution.

[75]  S. Nadler,et al.  Phylogenetic trees support the coevolution of parasites and their hosts , 1988, Nature.

[76]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[77]  J. Felsenstein Phylogenies from molecular sequences: inference and reliability. , 1988, Annual review of genetics.

[78]  M. Clegg,et al.  Evolutionary Analysis of Plant DNA Sequences , 1987, The American Naturalist.

[79]  Daniel Simberloff,et al.  CALCULATING PROBABILITIES THAT CLADOGRAMS MATCH: A METHOD OF BIOGEOGRAPHICAL INFERENCE , 1987 .

[80]  J. Hartigan,et al.  Statistical Analysis of Hominoid Molecular Evolution , 1987 .

[81]  M. Nei Molecular Evolutionary Genetics , 1987 .

[82]  G. Olsen,et al.  Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. , 1987, Cold Spring Harbor symposia on quantitative biology.

[83]  M. Bishop,et al.  Maximum likelihood alignment of DNA sequences. , 1986, Journal of molecular biology.

[84]  J. Pettigrew Flying primates? Megabats have the advanced pathway from eye to midbrain. , 1986, Science.

[85]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[86]  C. Luo,et al.  A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. , 1985, Molecular biology and evolution.

[87]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[88]  Daniel R. Brooks,et al.  Hennig's Parasitological Method: A Proposed Solution , 1981 .

[89]  M. Kimura Estimation of evolutionary distances between homologous nucleotide sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Walter Gilbert,et al.  The evolution of genes: the chicken preproinsulin gene , 1980, Cell.

[91]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[92]  Joseph Felsenstein,et al.  The number of evolutionary trees , 1978 .

[93]  R. Grantham Amino Acid Difference Formula to Help Explain Protein Evolution , 1974, Science.

[94]  W. Meredith,et al.  Statistics and Data Analysis , 1974 .

[95]  J. Neyman MOLECULAR STUDIES OF EVOLUTION: A SOURCE OF NOVEL STATISTICAL PROBLEMS* , 1971 .

[96]  N. Reid,et al.  Likelihood , 1993 .

[97]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[98]  J. Griffiths The Theory of Stochastic Processes , 1967 .

[99]  D. Cox Tests of Separate Families of Hypotheses , 1961 .

[100]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[101]  C. Simulating Probability Distributions in the Coalescent * , 2022 .