Multifrequency Analysis of Brain-Computer Interfaces

Modern brain computer interfaces (BCI) rely on an extensive use of machine learning and signal processing techniques. This review will focus on an important prerequisite, namely spectral preprocessing. In particular, the optimal usage of multiple frequency features for BCI is discussed in general along with the commonly employed tricks for frequency choice. This is linked to the underlying physiology. Finally, applications of the multifrequency framework are given: (a) to BCI in general and (b) for analysing the BCI illiterates phenomenon.

[1]  Klaus-Robert Müller,et al.  Learning From More Than One Data Source: Data Fusion Techniques for Sensorimotor Rhythm-Based Brain–Computer Interfaces , 2015, Proceedings of the IEEE.

[2]  Klaus-Robert Müller,et al.  The Berlin Brain-Computer Interface (BBCI) – towards a new communication channel for online control in gaming applications , 2007, Multimedia Tools and Applications.

[3]  Motoaki Kawanabe,et al.  Divergence-Based Framework for Common Spatial Patterns Algorithms , 2014, IEEE Reviews in Biomedical Engineering.

[4]  Robert F. Tate,et al.  Correlation Between a Discrete and a Continuous Variable. Point-Biserial Correlation , 1954 .

[5]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[6]  Stefan Haufe,et al.  Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data , 2015, Proceedings of the IEEE.

[7]  K.-R. Muller,et al.  Linear and nonlinear methods for brain-computer interfaces , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[8]  Cuntai Guan,et al.  Optimum Spatio-Spectral Filtering Network for Brain–Computer Interface , 2011, IEEE Transactions on Neural Networks.

[9]  Klaus-Robert Müller,et al.  Neurophysiological predictor of SMR-based BCI performance , 2010, NeuroImage.

[10]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[11]  K. Müller,et al.  Finding stationary subspaces in multivariate time series. , 2009, Physical review letters.

[12]  Klaus-Robert Müller,et al.  Towards Zero Training for Brain-Computer Interfacing , 2008, PloS one.

[13]  Kazuyuki Aihara,et al.  Optimizing Spectral Filters for Single Trial EEG Classification , 2006, DAGM-Symposium.

[14]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[15]  F. Meinecke,et al.  Analysis of Multimodal Neuroimaging Data , 2011, IEEE Reviews in Biomedical Engineering.

[16]  Yang Li,et al.  A Sparse Common Spatial Pattern Algorithm for Brain-Computer Interface , 2011, ICONIP.

[17]  Klaus-Robert Müller,et al.  Playing Pinball with non-invasive BCI , 2008, NIPS.

[18]  Heung-Il Suk,et al.  A Novel Bayesian Framework for Discriminative Feature Extraction in Brain-Computer Interfaces , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Benjamin Blankertz,et al.  Designing for uncertain, asymmetric control: Interaction design for brain-computer interfaces , 2009, Int. J. Hum. Comput. Stud..

[20]  Klaus-Robert Müller,et al.  Co-adaptive calibration to improve BCI efficiency , 2011, Journal of neural engineering.

[21]  Motoaki Kawanabe,et al.  Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing , 2007, NIPS.

[22]  Klaus-Robert Müller,et al.  Predicting BCI Subject Performance Using Probabilistic Spatio-Temporal Filters , 2014, PloS one.

[23]  Joseph Lev,et al.  The Point Biserial Coefficient of Correlation , 1949 .

[24]  Klaus-Robert Müller,et al.  Integration of Multivariate Data Streams With Bandpower Signals , 2013, IEEE Transactions on Multimedia.

[25]  Klaus-Robert Müller,et al.  Spatio-spectral filters for improving the classification of single trial EEG , 2005, IEEE Transactions on Biomedical Engineering.

[26]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[27]  J R Wolpaw,et al.  EEG-based communication and control: short-term role of feedback. , 1998, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[28]  Z J Koles,et al.  The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. , 1991, Electroencephalography and clinical neurophysiology.

[29]  K. Jellinger Toward Brain-Computer Interfacing , 2009 .

[30]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b , 2012, Front. Neurosci..

[31]  Klaus-Robert Müller,et al.  A regularized discriminative framework for EEG analysis with application to brain–computer interface , 2010, NeuroImage.

[32]  Klaus-Robert Müller,et al.  Subject-independent mental state classification in single trials , 2009, Neural Networks.

[33]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[34]  Klaus-Robert Müller,et al.  Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces , 2011, Neural Computation.

[35]  Klaus-Robert Müller,et al.  ℓ1-penalized linear mixed-effects models for high dimensional data with application to BCI , 2011, NeuroImage.

[36]  Klaus-Robert Müller,et al.  Subject independent EEG-based BCI decoding , 2009, NIPS.

[37]  H. Flor,et al.  A spelling device for the paralysed , 1999, Nature.

[38]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[39]  Owen Falzon,et al.  The analytic common spatial patterns method for EEG-based BCI data , 2012, Journal of neural engineering.

[40]  G. Pfurtscheller,et al.  Optimal spatial filtering of single trial EEG during imagined hand movement. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[41]  Moritz Grosse-Wentrup,et al.  Multitask Learning for Brain-Computer Interfaces , 2010, AISTATS.

[42]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[43]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[44]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[45]  Cuntai Guan,et al.  Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs , 2012, Pattern Recognit..

[46]  Anton Nijholt,et al.  BCI for Games: A 'State of the Art' Survey , 2008, ICEC.

[47]  Klaus-Robert Müller,et al.  Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring , 2008, Journal of Neuroscience Methods.

[48]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[49]  E. Oja,et al.  Independent Component Analysis , 2013 .

[50]  Klaus-Robert Müller,et al.  Introduction to machine learning for brain imaging , 2011, NeuroImage.

[51]  J. Wolpaw,et al.  Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface , 2005, Neurology.

[52]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[53]  M. Nuttin,et al.  A brain-actuated wheelchair: Asynchronous and non-invasive Brain–computer interfaces for continuous control of robots , 2008, Clinical Neurophysiology.

[54]  Chiew Tong Lau,et al.  A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain–Computer Interfaces , 2009, IEEE Transactions on Biomedical Engineering.

[55]  Fernando Lopes da Silva,et al.  Comprar Niedermeyer's Electroencephalography, 6/e (Basic Principles, Clinical Applications, and Related Fields ) | Fernando Lopes Da Silva | 9780781789424 | Lippincott Williams & Wilkins , 2010 .

[56]  C Grozea,et al.  On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up , 2012, Spinal Cord.