Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping

[1]  K. Siddique,et al.  Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum , 2012, Crop and Pasture Science.

[2]  T. Warkentin,et al.  Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.). , 2011, Genome.

[3]  S. Gupta,et al.  Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram [Vigna mungo (L.) Hepper] , 2010, Euphytica.

[4]  J. Arnason,et al.  QTL mapping of tropical maize grain components associated with maize weevil resistance. , 2010 .

[5]  T. Warkentin,et al.  Genetic control and QTL analysis of cotyledon bleaching resistance in green field pea (Pisum sativum L.). , 2010, Genome.

[6]  D. Rubiales,et al.  Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross , 2010, Euphytica.

[7]  K. Siddique,et al.  Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum , 2010, Euphytica.

[8]  M. Evans,et al.  Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. , 2009 .

[9]  M. Humphry,et al.  Relationship between bruchid resistance and seed mass in mungbean based on QTL analysis. , 2009, Genome.

[10]  M. Khairallah,et al.  Mapping of QTL associated with maize weevil resistance in tropical maize , 2009 .

[11]  G. Yan,et al.  Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum x P. fulvum interspecific cross , 2008 .

[12]  M. Hayden,et al.  Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat , 2008, Molecular Breeding.

[13]  C. Rameau,et al.  Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula , 2006, Theoretical and Applied Genetics.

[14]  C. Rameau,et al.  Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.) , 2005, Theoretical and Applied Genetics.

[15]  T. Warkentin,et al.  Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.) , 2004, Euphytica.

[16]  D. Hardie,et al.  Field screening ofPisum accessions to evaluate their susceptibility to the pea weevil (Coleoptera: Bruchidae) , 1995, Euphytica.

[17]  O. Byrne Incorporation of pea weevil resistance from wild pea (Pisum fulvum) into cultivated field pea (Pisum sativum) , 2005 .

[18]  S. Weigand,et al.  Research achievements in plant resistance to insect pests of cool season food legumes , 2004, Euphytica.

[19]  C. Cardona,et al.  Inheritance of resistance to Acanthoscelides obtectus in a wild common bean accession crossed to commercial bean cultivars , 2004, Euphytica.

[20]  S. Woods,et al.  Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.) , 2003, Theoretical and Applied Genetics.

[21]  E. Pang,et al.  Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea , 2003, Theoretical and Applied Genetics.

[22]  M. V. Stackelberg,et al.  Identification of AFLP and STS markers closely linked to the def locus in pea , 2003, Theoretical and Applied Genetics.

[23]  R. Ford,et al.  An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers , 2003, Theoretical and Applied Genetics.

[24]  S. L. Clement,et al.  Variation among Accessions of Pisum fulvum for Resistance to Pea Weevil , 2002 .

[25]  F. Muehlbauer,et al.  Integration of sequence tagged microsatellite sites to the chickpea genetic map , 2002, Theoretical and Applied Genetics.

[26]  N. Galwey,et al.  Searching for molecular markers for resistance to pea weevil , 2002 .

[27]  K. Manly,et al.  Map Manager QTX, cross-platform software for genetic mapping , 2001, Mammalian Genome.

[28]  G. Aubert,et al.  Microsatellite polymorphism in Pisum sativum , 2001 .

[29]  S. L. Clement,et al.  Development of bioassays to evaluate wild pea germplasm for resistance to pea weevil (Coleoptera: Bruchidae) , 2001 .

[30]  A. Errico,et al.  Distorted segregation resulting from pea chromosome reconstructions with alien segments from Pisum fulvum. , 2000, The Journal of heredity.

[31]  R. P. Doss,et al.  Bruchins: insect-derived plant regulators that stimulate neoplasm formation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Schön,et al.  Bias and Sampling Error of the Estimated Proportion of Genotypic Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using Cross Validation and Validation With Independent Samples. , 2000, Genetics.

[33]  S. L. Clement,et al.  Opportunities for integrated management of insect pests of grain legumes , 2000 .

[34]  R. Knight Linking Research and Marketing Opportunities for Pulses in the 21st Century , 2000, Current Plant Science and Biotechnology in Agriculture.

[35]  W. Parrott,et al.  Quantitative Trait Loci for Antibiosis Resistance to Corn Earworm in Soybean , 1999 .

[36]  S. L. Clement,et al.  FIELD EVALUATIONS OF WILD PEAS AGAINST PEA WEEVIL, 1994 AND 1996 , 1999 .

[37]  L. Girsch,et al.  A new method for determining the infestation of field beans (Vicia faba) and peas (Pisum sativum) with bean beetle (Bruchus rufimanus) and pea beetle (Bruchus pisorum), respectively. , 1999 .

[38]  V. Laucou,et al.  Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum , 1998, Theoretical and Applied Genetics.

[39]  F. Marzo,et al.  Fertilization effects of phosphorus and sulfur on chemical composition of seeds of Pisum sativum L. and relative infestation by Bruchus pisorum L , 1997 .

[40]  J. McCallum,et al.  Biochemical and Genetic Linkage Analysis of Green Seed Color in Field Pea , 1997 .

[41]  J. Horne,et al.  Bruchus pisorum L. (Coleoptera, Bruchidae) control by a knockdown pyrethroid in field peas , 1991 .

[42]  G. Mangano,et al.  The effectiveness of chemicals against the pea weevil, Bruchus pisorum (L.), and native budworm, Helicoverpa punctigera Wallengren, on field peas, Pisum sativum L., in Western Australia , 1990 .

[43]  M. Simmonds,et al.  Legume Seeds: the Defences of Wild and Cultivated Species of Phaseolus Against Attack by Bruchid Beetles , 1989 .

[44]  D. Rusoke,et al.  Inheritance of pod and seed resistance to the cow-pea seed beetle (Callosobruchus maculatus Fabr.) , 1987, Journal of Agricultural Sciences.

[45]  S. Singh,et al.  Inheritance of Bruchid Resistance in Cowpea 1 , 1985 .

[46]  F. Muehlbauer,et al.  Resistance of Pea Introductions to the Pea Weevil , 1977 .

[47]  S. Sood,et al.  Effect of peapollen feeding on maturation & copulation in the beetle, Bruchus pisorum L. , 1975, Indian journal of experimental biology.

[48]  T. A. Brindley Some Notes on the Biology of the Pea Weevil Bruchus Pisorum L. (Coleoptera, Bruchidae) at Moscow, Idaho , 1933 .