Intelligent Algorythm for Immediate Financial Strategy for SMES

In this work is discussed a scientific methodology concerning an intelligent algorithm oriented on financial strategy for SMEs. The paper follows the research guidelines of ‘Frascati’ manual about knowledge gain by innovative algorithms. Specifically has been applied a Support Vector Machine (SVM) algorithms predicting financial score of Small and Medium Enterprises –SMEs-. For the output results has been executed a Rapid Miner workflow. The used approach represents a methodology to follow in order to improve a research project about financial technologies.

[1]  Boris Kovalerchuk,et al.  Data Mining for Financial Applications , 2010, Data Mining and Knowledge Discovery Handbook.

[2]  Ingo Mierswa,et al.  YALE: rapid prototyping for complex data mining tasks , 2006, KDD '06.

[3]  Filippo Fuggitti Tecniche e metodologie di data mining: analisi applicata alle charities inglesi , 2016 .

[4]  Amrita Kaur,et al.  Pattern Analysis On Banking Dataset , 2015 .

[5]  Younes Boujelbene,et al.  Credit risk prediction: A comparative study between discriminant analysis and the neural network approach , 2015 .

[6]  R. Gerritsen Assessing loan risks: a data mining case study , 1999 .

[7]  Paško Konjevoda,et al.  Open-Source Tools for Data Mining in Social Science , 2012 .

[8]  Cenk,et al.  Data Mining in Financial Application , 2011 .

[9]  Adam Fadlalla,et al.  An Analysis of the Applications of Neural Networks in Finance , 2001, Interfaces.

[10]  C. Dirican,et al.  The Impacts of Robotics, Artificial Intelligence On Business and Economics , 2015 .

[11]  Martin Mozina,et al.  Orange: data mining toolbox in python , 2013, J. Mach. Learn. Res..

[12]  Ian H. Witten,et al.  WEKA: a machine learning workbench , 1994, Proceedings of ANZIIS '94 - Australian New Zealnd Intelligent Information Systems Conference.

[13]  Vijay Kotu,et al.  Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner , 2014 .

[14]  Hayden Wimmer,et al.  A Comparison of Open Source Tools for Data Science , 2016 .

[15]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[16]  Md. Rafiqul Islam,et al.  A Data Mining Approach to Predict Prospective Business Sectors for Lending in Retail Banking Using Decision Tree , 2015, ArXiv.

[17]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[18]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[19]  Selvan Simon,et al.  ACCURACY DRIVEN ARTIFICIAL NEURAL NETWORKS IN STOCK MARKET PREDICTION , 2012 .