Classification of Monotone Gene Profiles Using Information Theory Selection Methods

In the previous chapter, we discussed the order-restricted δ-clustering method for clustering subsets of genes with similar monotone dose-response profiles. In this chapter, we focus on a second approach in which clustering is based on information criteria (Lin et al. 2009 ; Liu et al. 2009a,b). As we mentioned in Chap. 9, for a dose-response experiment with K + 1 dose levels, after an initial filtering, there are a finite number of monotone dose-response ANOVA models which can be fitted to the data. For example, for a four dose-level experiment, there are, for each direction, seven dose-response profiles (listed in Table 9.1 and shown in Fig. 9.1 can be fitted.

[1]  R. Marcus,et al.  The powers of some tests of the equality of normal means against an ordered alternative , 1976 .

[2]  Nan Lin,et al.  Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments , 2009, BMC Bioinformatics.

[3]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[4]  Williams Da,et al.  A test for differences between treatment means when several dose levels are compared with a zero dose control. , 1971 .

[5]  Louise Ryan,et al.  Quantifying Dose–Response Uncertainty Using Bayesian Model Averaging , 2008 .

[6]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[7]  Kazuo Anraku,et al.  An information criterion for parameters under a simple order restriction , 1999 .

[8]  H. Akaike A new look at the statistical model identification , 1974 .

[9]  Nils Lid Hjort,et al.  Model Selection and Model Averaging: Contents , 2008 .

[10]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[11]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[12]  David Anderson,et al.  Multimodel Ranking and Inference in Ground Water Modeling , 2004, Ground water.

[13]  H. Akaike Likelihood of a model and information criteria , 1981 .

[14]  Dan Lin,et al.  Classification of Trends in Dose-Response Microarray Experiments Using Information Theory Selection Methods~!2009-02-24~!2009-07-09~!2009-12-23~! , 2009 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Roger M. Cooke,et al.  Uncertainty Modeling in Dose Response , 2009 .

[17]  David R. Anderson,et al.  Multimodel Inference , 2004 .