Homotopy of Non-Modular Partitions and the Whitehouse Module

AbstractWe present a class of subposets of the partition lattice Πn with the following property: The order complex is homotopy equivalent to the order complex of Πn − 1, and the Sn-module structure of the homology coincides with a recently discovered lifting of the Sn − 1-action on the homology of Πn − 1. This is the Whitehouse representation on Robinson's space of fully-grown trees, and has also appeared in work of Getzler and Kapranov, Mathieu, Hanlon and Stanley, and Babson et al.One example is the subposet Pnn − 1 of the lattice of set partitions Πn, obtained by removing all elements with a unique nontrivial block. More generally, for 2 ≤ k ≤ n − 1, let Qnk denote the subposet of the partition lattice Πn obtained by removing all elements with a unique nontrivial block of size equal to k, and let Pnk = ∩i = 2kQni. We show that Pnk is Cohen-Macaulay, and that Pnk and Qnk are both homotopy equivalent to a wedge of spheres of dimension (n − 4), with Betti number $$(n - 1)!\frac{{n - k}}{k}$$ . The posets Qnk are neither shellable nor Cohen-Macaulay. We show that the Sn-module structure of the homology generalises the Whitehouse module in a simple way.We also present a short proof of the well-known result that rank-selection in a poset preserves the Cohen-Macaulay property.

[1]  Richard P. Stanley,et al.  Some Aspects of Groups Acting on Finite Posets , 1982, J. Comb. Theory, Ser. A.

[2]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[3]  Michelle L. Wachs A Basis for the Homology of thed-Divisible Partition Lattice , 1996 .

[4]  Svante Linusson,et al.  COMPLEXES OF NOT i-CONNECTED GRAPHS , 1997, math/9705219.

[5]  S. Sundaram,et al.  The Homology Representations of the Symmetric Group on Cohen-Macaulay Subposets of the Partition Lattice , 1994 .

[6]  Ezra Getzler,et al.  Cyclic Operads and Cyclic Homology , 1995 .

[7]  S. Bouc,et al.  Homologie de certains ensembles de 2-sous-groupes des groupes symétriques , 1992 .

[8]  Kenneth Baclawski,et al.  Cohen-Macaulay Connectivity and Geometric Lattices , 1982, Eur. J. Comb..

[9]  James W. Walker,et al.  Homotopy Type and Euler Characteristic of Partially Ordered Sets , 1981, Eur. J. Comb..

[10]  P. Hanlon,et al.  The fixed-point partition lattices , 1981 .

[11]  Sarah Whitehouse Gamma (co)homology of commutative algebras and some related representations of the symmetric group , 1994 .

[12]  D. Quillen,et al.  Homotopy properties of the poset of nontrivial p-subgroups of a group , 1978 .

[13]  Louis Solomon,et al.  A decomposition of the group algebra of a finite Coxeter group , 1968 .

[14]  Philip J. Hanlon,et al.  Otter's Method and the Homology of Homeomorphically Irreduciblek-Trees , 1996, J. Comb. Theory, Ser. A.

[15]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[16]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[17]  Richard P. Stanley,et al.  A $q$-deformation of a trivial symmetric group action , 1998 .

[18]  James William Walker Topology and combinatorics of ordered sets , 1981 .

[19]  James R. Munkres,et al.  Topological results in combinatorics. , 1984 .

[20]  Anders Björner,et al.  Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings , 1984 .

[21]  Olivier Mathieu Hidden 467-1467-1467-1 , 1996 .

[22]  D. Kozlov General lexicographic shellability and orbit arrangements , 1997 .

[23]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[24]  Richard P. Stanley,et al.  Balanced Cohen-Macaulay complexes , 1979 .

[25]  Alan Robinson,et al.  The tree representation of ∑n + 1 , 1996 .

[26]  D. Benson,et al.  Representations and Cohomology , 1991 .

[27]  A. Björner Topological methods , 1996 .

[28]  Kenneth Baclawski,et al.  Cohen-Macaulay ordered sets , 1980 .