Expansions of chromatic polynomials and log-concavity

In this paper we present several results and open problems about log-concavity properties of sequences associated with graph colorings. Five polynomials intimately related to the chromatic polynomial of a graph are introduced and their zeros, combinatorial and log-concavity properties are studied. Four of these polynomials have never been considered before in the literature and some yield new expansions for the chromatic polynomial

[1]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[2]  H. Whitney The Coloring of Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Dirac On rigid circuit graphs , 1961 .

[4]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[5]  R. Read An introduction to chromatic polynomials , 1968 .

[6]  Frank Harary,et al.  Graph Theory , 2016 .

[7]  D. Rose Triangulated graphs and the elimination process , 1970 .

[8]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[9]  W. T. Tutte THE GOLDEN RATIO IN THE THEORY OF CHROMATIC POLYNOMIALS. , 1970 .

[10]  R. Stanley Ordered Structures And Partitions , 1972 .

[11]  Regular major maps of at most 19 regions and their Q-chromials☆ , 1972 .

[12]  Richard P. Stanley Acyclic orientations of graphs , 1973, Discret. Math..

[13]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[14]  N. Biggs Algebraic Graph Theory , 1974 .

[15]  D. White,et al.  Rook theory. I. Rook equivalence of Ferrers boards , 1975 .

[16]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[17]  Albert Nijenhuis On Permanents and the Zeros of Rook Polynomials , 1976, J. Comb. Theory, Ser. A.

[18]  Rook Theory—IV. Orthogonal Sequences of Rook Polynomials , 1977 .

[19]  R. Stanley Cohen-Macaulay Complexes , 1977 .

[20]  Robert R. Korfhage,et al.  Sigma-polynomials and Graph Coloring , 1978, Journal of combinatorial theory. Series B (Print).

[21]  JAY R. GOLDMAN,et al.  Rook theory III. Rook polynomials and the chromatic structure of graphs , 1978, J. Comb. Theory, Ser. B.

[22]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[23]  Richard P. Stanley,et al.  Balanced Cohen-Macaulay complexes , 1979 .

[24]  Dennis E. White Monotonicity and unimodality of the pattern inventory , 1980 .

[25]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[26]  Robert A. Proctor,et al.  Solution of Two Difficult Combinatorial Problems with Linear Algebra , 1982 .

[27]  Robert A. Proctor Representations of $\mathfrak{sl}( 2,\mathbb{C} )$ on Posets and the Sperner Property , 1982 .

[28]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[29]  Medha Dhurandhar,et al.  Characterization of quadratic and cubic sigma-polynomials , 1984, J. Comb. Theory, Ser. B.

[30]  Richard P. Stanley,et al.  Unimodality and Lie superalgebras , 1985 .

[31]  D. White,et al.  Constructive combinatorics , 1986 .

[32]  Richard P. Stanley,et al.  Generalized $H$-Vectors, Intersection Cohomology of Toric Varieties, and Related Results , 1987 .

[33]  Lynne M. Butler,et al.  A unimodality result in the enumeration of subgroups of a finite abelian group , 1987 .

[34]  A note on quadratic σ-polynomials , 1988 .

[35]  Bruce E. Sagan,et al.  Inductive and injective proofs of log concavity results , 1988, Discret. Math..

[36]  Shaoji Xu,et al.  On σ-polynomials , 1988 .

[37]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[38]  On the unimodality of discrete probability measures , 1989 .

[39]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[40]  Doron Zeilberger,et al.  Kathy O'Hara's constructive proof of the unimodality of the Gaussian polynomials , 1989 .

[41]  Kathleen M. O'Hara,et al.  Unimodality of gaussian coefficients: A constructive proof , 1990, J. Comb. Theory, Ser. A.

[42]  Francesco Brenti,et al.  Unimodal polynomials arising from symmetric functions , 1990 .

[43]  David G. Wagner,et al.  The partition polynomial of a finite set system , 1990, J. Comb. Theory, Ser. A.

[44]  Francesco Brenti Log-concavity and Combinatorial Properties of Fibonacci Lattices , 1991, Eur. J. Comb..

[45]  D. Wagner,et al.  Total positivity of Hadamard products , 1992 .

[46]  Bruce E. Sagan LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .