Relative confidence sampling for efficient on-line ranker evaluation
暂无分享,去创建一个
M. de Rijke | Shimon Whiteson | Maarten de Rijke | Rémi Munos | Masrour Zoghi | R. Munos | M. Zoghi | S. Whiteson | Shimon Whiteson
[1] W. R. Thompson. ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES , 1933 .
[2] Cyril W. Cleverdon,et al. Factors determining the performance of indexing systems , 1966 .
[3] Thorsten Joachims,et al. Optimizing search engines using clickthrough data , 2002, KDD.
[4] Thorsten Joachims,et al. Evaluating Retrieval Performance Using Clickthrough Data , 2003, Text Mining.
[5] Peter Auer,et al. Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.
[6] Ellen M. Voorhees,et al. TREC: Experiment and Evaluation in Information Retrieval (Digital Libraries and Electronic Publishing) , 2005 .
[7] José Luis Vicedo González,et al. TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..
[8] Jonathan L. Herlocker,et al. Click data as implicit relevance feedback in web search , 2007, Inf. Process. Manag..
[9] Nick Craswell,et al. An experimental comparison of click position-bias models , 2008, WSDM '08.
[10] Milad Shokouhi,et al. Using Clicks as Implicit Judgments: Expectations Versus Observations , 2008, ECIR.
[11] Filip Radlinski,et al. How does clickthrough data reflect retrieval quality? , 2008, CIKM '08.
[12] Thorsten Joachims,et al. Interactively optimizing information retrieval systems as a dueling bandits problem , 2009, ICML '09.
[13] Hongyuan Zha,et al. Global ranking by exploiting user clicks , 2009, SIGIR.
[14] Thorsten Joachims,et al. The K-armed Dueling Bandits Problem , 2012, COLT.
[15] Chao Liu,et al. Efficient multiple-click models in web search , 2009, WSDM '09.
[16] Andrew Trotman,et al. Comparative analysis of clicks and judgments for IR evaluation , 2009, WSCD '09.
[17] Christos Faloutsos,et al. Tailoring click models to user goals , 2009, WSCD '09.
[18] ChengXiang Zhai,et al. Evaluation of methods for relative comparison of retrieval systems based on clickthroughs , 2009, CIKM.
[19] Andreas Krause,et al. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.
[20] Filip Radlinski,et al. Comparing the sensitivity of information retrieval metrics , 2010, SIGIR.
[21] Thorsten Joachims,et al. Beat the Mean Bandit , 2011, ICML.
[22] Csaba Szepesvári,et al. –armed Bandits , 2022 .
[23] Rémi Munos,et al. Optimistic Optimization of Deterministic Functions , 2011, NIPS 2011.
[24] Yi Chang,et al. Yahoo! Learning to Rank Challenge Overview , 2010, Yahoo! Learning to Rank Challenge.
[25] Katja Hofmann,et al. A probabilistic method for inferring preferences from clicks , 2011, CIKM '11.
[26] Lihong Li,et al. An Empirical Evaluation of Thompson Sampling , 2011, NIPS.
[27] Katja Hofmann,et al. Information Retrieval manuscript No. (will be inserted by the editor) Balancing Exploration and Exploitation in Listwise and Pairwise Online Learning to Rank for Information Retrieval , 2022 .
[28] Rémi Munos,et al. Thompson Sampling: An Asymptotically Optimal Finite-Time Analysis , 2012, ALT.
[29] Alexander J. Smola,et al. Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations , 2012, ICML.
[30] Filip Radlinski,et al. Large-scale validation and analysis of interleaved search evaluation , 2012, TOIS.
[31] Shipra Agrawal,et al. Analysis of Thompson Sampling for the Multi-armed Bandit Problem , 2011, COLT.
[32] Rémi Munos,et al. Stochastic Simultaneous Optimistic Optimization , 2013, ICML.
[33] Katja Hofmann,et al. Fidelity, Soundness, and Efficiency of Interleaved Comparison Methods , 2013, TOIS.
[34] Filip Radlinski,et al. Optimized interleaving for online retrieval evaluation , 2013, WSDM.
[35] Raphaël Féraud,et al. Generic Exploration and K-armed Voting Bandits , 2013, ICML.
[36] Katja Hofmann,et al. Evaluating aggregated search using interleaving , 2013, CIKM.
[37] M. de Rijke,et al. Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem , 2013, ICML.
[38] T. L. Lai Andherbertrobbins. Asymptotically Efficient Adaptive Allocation Rules , 2022 .