Model agnostic probes of dark sectors at neutrino experiments

Present and upcoming neutrino experiments can have considerable sensitivity to dark sectors that interact feebly with the Standard Model. We consider dark sectors interacting with the SM through irrelevant portals that are motivated on general principles. We derive bounds on such scenarios by considering decays of dark sector excitations inside the neutrino detector, placed downstream from the target. Our approach is model agnostic and applies to a wide range of dark sector models, both strongly and weakly coupled. In this approach, the dark sector is characterized by two scales: Λ UV (mass of mediators generating the portals) and Λ IR (mass gap of the dark sector). At intermediate energies, far away from these scales, the theory is approximately scale-invariant. This allows the calculation of production rates independent of the threshold corrections, although some mild model-dependent assumptions are needed. We look at various dark sector production processes relevant at neutrino experiments such as meson decays, direct partonic production, and dark bremsstrahlung. We consider representative experiments from past (CHARM), present (ICARUS, NOvA, Micro-BooNE), and upcoming future (DUNE-MPD), and compare their reach to existing bounds from high energy experiments (LHC and LEP) and dedicated future LLP experiments (SHiP). We find that the upcoming DUNE-MPD can probe Λ UV in the TeV range, and Λ IR in the 0.1-1 GeV range, covering parts of parameter space currently inaccessible in high energy experiments and fixed-target/beam-dump experiments, and is comparable to future LLP experiments. In general, future neutrino experiments can be an efficient probe of dark sectors, providing complementary as well as new reach in parameter space.

[1]  Zhen Liu,et al.  Searches for heavy QCD axions via dimuon final states , 2022, Journal of High Energy Physics.

[2]  D. Barducci,et al.  Probing right-handed neutrinos dipole operators , 2022, Journal of High Energy Physics.

[3]  D. A. Wickremasinghe,et al.  Measurement of the ν_{e}-Nucleus Charged-Current Double-Differential Cross Section at ⟨E_{ν}⟩=2.4  GeV Using NOvA. , 2022, Physical review letters.

[4]  Christopher S. Hill,et al.  The Forward Physics Facility at the High-Luminosity LHC , 2022, Journal of Physics G: Nuclear and Particle Physics.

[5]  Rashmish K. Mishra,et al.  Probing New Gauge Forces with a High-Energy Muon Beam Dump. , 2022, Physical review letters.

[6]  I. Shoemaker,et al.  Neutrino Frontier Topical Group Report (NF03): Physics Beyond the Standard Model , 2022, 2209.10362.

[7]  P. Harris,et al.  Dark Sector Physics at High-Intensity Experiments , 2022, 2209.04671.

[8]  J. A. Dror,et al.  New Insights Into Axion-Lepton Interactions , 2022 .

[9]  S. Sarkar,et al.  Blast from the past II: Constraints on heavy neutral leptons from the BEBC WA66 beam dump experiment , 2022, SciPost Physics.

[10]  C. Hearty,et al.  Exploring Dark Sector Portals with High Intensity Experiments , 2022, 2207.06905.

[11]  G. Petrillo,et al.  Dark Sector Studies with Neutrino Beams , 2022, 2207.06898.

[12]  J. A. Dror,et al.  Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments , 2022, 2207.02882.

[13]  C. Hearty,et al.  A Snowmass Whitepaper: Dark Matter Production at Intensity-Frontier Experiments , 2022, 2207.00597.

[14]  A. Falcone,et al.  Deep underground neutrino experiment: DUNE , 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[15]  P. Ilten,et al.  Axial vectors in DarkCast , 2022, Journal of High Energy Physics.

[16]  Jaehoon Yu,et al.  BSM Targets at a"Target-less DUNE" , 2022, 2206.06380.

[17]  Xun-jie Xu,et al.  Probing the ν R -philic Z (cid:48) at DUNE near detectors , 2022 .

[18]  C. Hearty,et al.  Forecasting dark showers at Belle II , 2022, Journal of High Energy Physics.

[19]  R. Funchal,et al.  New limits on leptophilic ALPs and Majorons from ArgoNeuT , 2022 .

[20]  N. Blinov,et al.  Axion-like particle searches at DarkQuest , 2021, Journal of High Energy Physics.

[21]  Hsin-Chia Cheng,et al.  A theory of dark pions , 2021, Journal of High Energy Physics.

[22]  A. Ritz,et al.  Dark sector production via proton bremsstrahlung , 2021, Physical Review D.

[23]  S. Gninenko,et al.  Prospects in the search for a new light $Z'$ boson with the NA64$\mu$ experiment at the CERN SPS , 2021, 2110.15111.

[24]  C. Frugiuele,et al.  Inelastic dark matter at the Fermilab Short Baseline Neutrino Program , 2021, Physical Review D.

[25]  C.Thorpe,et al.  Search for a Higgs Portal Scalar Decaying to Electron-Positron Pairs in the MicroBooNE Detector. , 2021, Physical review letters.

[26]  S. Iwamoto,et al.  New physics searches at the ILC positron and electron beam dumps , 2021, Journal of High Energy Physics.

[27]  Jan Hajer,et al.  Portal Effective Theories. A framework for the model independent description of light hidden sector interactions , 2021, Journal of High Energy Physics.

[28]  A. Carmona,et al.  Charming ALPs , 2021, Journal of High Energy Physics.

[29]  Rashmish K. Mishra,et al.  Searching for elusive dark sectors with terrestrial and celestial observations , 2020, Journal of High Energy Physics.

[30]  Jaehoon Yu,et al.  Axionlike Particles at Future Neutrino Experiments: Closing the Cosmological Triangle. , 2020, Physical review letters.

[31]  Zhen Liu,et al.  Heavy axion opportunities at the DUNE near detector , 2020, Physical Review D.

[32]  M. Reece,et al.  Spheres to jets tuning event shapes with 5d simplified models , 2020, Journal of High Energy Physics.

[33]  S. Sarkar,et al.  Blast from the past: Constraints on the dark sector from the BEBC WA66 beam dump experiment , 2020, 2011.08153.

[34]  M. Taoso,et al.  Probing light dark scalars with future experiments , 2020, Journal of High Energy Physics.

[35]  M. Pospelov,et al.  Pair production of dark particles in meson decays , 2020, 2005.07102.

[36]  A. Ritz,et al.  LSND constraints on the Higgs portal , 2020, 2004.14515.

[37]  D. Gorbunov,et al.  Heavy neutral leptons from kaon decays in the SHiP experiment , 2020, 2004.07974.

[38]  P. Schuster,et al.  Sub-GeV dark matter production at fixed-target experiments , 2020, 2003.03379.

[39]  S. Ellis,et al.  Light dark sectors through the Fermion portal , 2020, Journal of High Energy Physics.

[40]  C. Frugiuele,et al.  Hunt for sub-GeV dark matter at neutrino facilities: A survey of past and present experiments , 2019, 1912.09346.

[41]  P. Fox,et al.  Searches for decays of new particles in the DUNE Multi-Purpose near Detector , 2019, Journal of High Energy Physics.

[42]  Atlas Collaboration Search for long-lived neutral particles produced in pp collisions at √s = 13 TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer , 2019, 1911.12575.

[43]  P. Meade,et al.  Light Scalars and the Koto Anomaly. , 2019, Physical review letters.

[44]  W. Altmannshofer,et al.  Constraining axionlike particles from rare pion decays , 2019, Physical Review D.

[45]  T. Boschi,et al.  Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector , 2019, Journal of High Energy Physics.

[46]  A. Blondel,et al.  Measurement of φ meson production in p + p interactions at 40, 80 and 158 GeV / c with the NA61/SHINE spectrometer at the CERN SPS , 2020 .

[47]  P. Filip,et al.  Hunting for Light Dark Matter with the NOvA Detector , 2020 .

[48]  J. Berger,et al.  Probing the Higgs portal at the Fermilab short-baseline neutrino experiments , 2019, 1909.11670.

[49]  A. Boyarsky,et al.  Phenomenology of GeV-scale scalar portal , 2019, Journal of High Energy Physics.

[50]  O. Palamara,et al.  The Short-Baseline Neutrino Program at Fermilab , 2019, Annual Review of Nuclear and Particle Science.

[51]  W. Altmannshofer,et al.  Neutrino tridents at DUNE , 2019, Physical Review D.

[52]  M. Spannowsky,et al.  A fresh look at ALP searches in fixed target experiments , 2019, Physics Letters B.

[53]  A. Rozanov,et al.  Physics beyond colliders at CERN: beyond the Standard Model working group report , 2019, Journal of Physics G: Nuclear and Particle Physics.

[54]  Atlas Collaboration Search for long-lived particles produced in pp collisions at s=13  TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer , 2018, Physical Review D.

[55]  A. M. Guler,et al.  Sensitivity of the SHiP experiment to Heavy Neutral Leptons , 2018, Journal of High Energy Physics.

[56]  M. Winkler Decay and detection of a light scalar boson mixing with the Higgs boson , 2018, Physical Review D.

[57]  M. Hostert,et al.  Neutrino trident scattering at near detectors , 2018, Journal of High Energy Physics.

[58]  C. Frugiuele,et al.  Hunting sub-GeV dark matter with the NOνA near detector , 2018, Physical Review D.

[59]  Matthew McCullough,et al.  Long-lived particles at the energy frontier: the MATHUSLA physics case , 2018, Reports on progress in physics. Physical Society.

[60]  D. H. White,et al.  Dark matter search in nucleon, pion, and electron channels from a proton beam dump with MiniBooNE , 2018, Physical Review D.

[61]  P. deNiverville,et al.  Implications of the dark axion portal for the muon g−2 , B factories, fixed target neutrino experiments, and beam dumps , 2018, Physical Review D.

[62]  N. Tran,et al.  M3: a new muon missing momentum experiment to probe (g − 2)μ and dark matter at Fermilab , 2018, Journal of High Energy Physics.

[63]  Felix Kling,et al.  Dark Higgs bosons at the ForwArd Search ExpeRiment , 2018 .

[64]  Wei Xue,et al.  Serendipity in dark photon searches , 2018, Journal of High Energy Physics.

[65]  J. Bian,et al.  Measurement of Neutrino-Electron Elastic Scattering at NOvA Near Detector , 2017, 1710.03428.

[66]  D. A. Wickremasinghe,et al.  Design and construction of the MicroBooNE detector , 2016, 1612.05824.

[67]  M. Pospelov,et al.  Light dark matter in neutrino beams: production modelling and scattering signatures at MiniBooNE, T2K and SHiP , 2016, 1609.01770.

[68]  D. B. Clark,et al.  ManeParse: A Mathematica reader for Parton Distribution Functions , 2016, Comput. Phys. Commun..

[69]  F. Kahlhoefer,et al.  ALPtraum: ALP production in proton beam dump experiments , 2015, 1512.03069.

[70]  I. Schienbein,et al.  nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties , 2015, 1509.01801.

[71]  J. Borburgh,et al.  A facility to Search for Hidden Particles (SHiP) at the CERN SPS , 2015, 1504.04956.

[72]  A. Rappoldi,et al.  A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam , 2015, 1503.01520.

[73]  D. Stolarski,et al.  Emerging jets , 2015, 1502.05409.

[74]  D. Gorbunov,et al.  Decaying light particles in the SHiP experiment: Signal rate estimates for hidden photons , 2014, 1411.4007.

[75]  R. Harnik,et al.  Natural electroweak breaking from a mirror symmetry. , 2005, Physical review letters.

[76]  M. Pospelov,et al.  Leptophobic dark matter at neutrino factories , 2014, 1405.7049.

[77]  R. Foot Mirror dark matter: Cosmology, galaxy structure and direct detection , 2014, 1401.3965.

[78]  J. Blumlein,et al.  New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data , 2013, 1311.3870.

[79]  K. Zurek Asymmetric Dark Matter: Theories, Signatures, and Constraints , 2013, 1308.0338.

[80]  Michael J. Pivovaroff,et al.  Working Group Report: New Light Weakly Coupled Particles , 2013 .

[81]  E. Pous Search for B→K(*)νν¯ and invisible quarkonium decays , 2013 .

[82]  K. Petraki,et al.  Review of asymmetric dark matter , 2013, 1305.4939.

[83]  P. Masjuan,et al.  Meson dominance of hadron form factors and large-Nc phenomenology , 2012, 1210.0760.

[84]  P. deNiverville,et al.  Signatures of sub-GeV dark matter beams at neutrino experiments , 2012, 1205.3499.

[85]  S. Gninenko Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays , 2012, 1204.3583.

[86]  C. Chiang,et al.  Constraint on parity-violating muonic forces. , 2011, Physical review letters.

[87]  M. Pospelov,et al.  Observing a light dark matter beam with neutrino experiments , 2011, 1107.4580.

[88]  J. Blumlein,et al.  New Exclusion Limits for Dark Gauge Forces from Beam-Dump Data , 2011, 1104.2747.

[89]  Jared Kaplan,et al.  Discovering New Light States at Neutrino Experiments , 2010, 1008.0636.

[90]  M. Pospelov,et al.  Exploring Portals to a Hidden Sector Through Fixed Targets , 2009, 0906.5614.

[91]  David E. Kaplan,et al.  Asymmetric Dark Matter , 2009, 0901.4117.

[92]  H. Zhang,et al.  Search for the invisible decay of J/psi in psi(2S) --> pi(+)pi(-) J/psi. , 2007, 0710.0039.

[93]  M. Strassler,et al.  Echoes of a hidden valley at hadron colliders , 2006, hep-ph/0604261.

[94]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[95]  Thomas Hahn,et al.  Cuba - a library for multidimensional numerical integration , 2004, Comput. Phys. Commun..

[96]  R. Zwicky,et al.  New results on B→π,K,η decay form factors from light-cone sum rules , 2004, hep-ph/0406232.

[97]  D. H. White,et al.  Evidence for neutrino oscillations from the observation ofν¯eappearance in aν¯μbeam , 2001 .

[98]  N. Weiner,et al.  Inelastic dark matter , 2001, hep-ph/0101138.

[99]  U. Mosel,et al.  Photon and meson induced reactions on the nucleon , 1998, nucl-th/9803057.

[100]  Robert Foot,et al.  A model with fundamental improper spacetime symmetries , 1991 .

[101]  B. Webber Average Multiplicities in Jets , 1984 .

[102]  A. Baroncelli,et al.  A search for decays of heavy neutrinos , 1983 .

[103]  A. Vainshtein,et al.  Remarks on Higgs-Boson Interactions with Nucleons , 1978 .

[104]  C. Yang Selection Rules for the Dematerialization of a Particle into Two Photons , 1950 .

[105]  L. Landau On the angular momentum of a system of two photons , 1948 .

[106]  E. Blucher Cp Violation and Rare Decays , 2022 .