Advanced Turbine Preliminary Design Environment for the Automatic Generation of Secondary Air System Models

The design and development process of an aero engine is a complex and time-consuming task that involves many disciplines and company departments with different objectives and requirements. Along the preliminary design phase, multiple concepts are assessed in order to select a competitive technology. The engine design process, which was traditionally subdivided into modular component tasks, is nowadays considered as a multi-disciplinary workflow. Having recognized the need for developing advanced turbine preliminary design tools, this work focuses on enhancing the integration of turbine design disciplines, improving the accuracy of models and speeding the time to generate models.The proposed process facilitates an automated turbine Secondary Air System (SAS) and turbine discs concept definition. Furthermore, the process of CAD models and flow network models generation is accelerated via automation of the engineering workflow. This is accomplished through a novel Java based data model, where the design of turbine discs and SAS features is captured in a programmable framework.In the application section, the preliminary design definition of a reference HP turbine subsystem is replicated using the newly developed common design environment. The automated workflow is then used to generate the corresponding CAD models, recognize the subsystem flow network, and generate the 1D flow network model. The results are then compared to the experimentally validated model of a reference engine. As conclusion, the automated workflow offers a quick and parametric model generation process, while providing a good level of fidelity for the preliminary design phase.Copyright © 2015 by Rolls-Royce Deutschland Ltd & Co KG