Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature

[1]  Mingde Chen,et al.  Ag@SnO2 core–shell material for use in fast-response ethanol sensor at room operating temperature , 2013 .

[2]  Nak-Jin Choi,et al.  Fast response formaldehyde gas sensor for USN application , 2012 .

[3]  Shuai Hou,et al.  Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose , 2012 .

[4]  Yeon-Tae Yu,et al.  Microstructure and CO gas sensing property of Au/SnO2 core–shell structure nanoparticles synthesized by precipitation method and microwave-assisted hydrothermal synthesis method , 2012 .

[5]  Reiko Kishi,et al.  A longitudinal study of aldehydes and volatile organic compounds associated with subjective symptoms related to sick building syndrome in new dwellings in Japan. , 2012, The Science of the total environment.

[6]  Hui Li,et al.  High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method , 2011 .

[7]  Prabir K. Dutta,et al.  Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications , 2011 .

[8]  G. Lu,et al.  Synthesis of novel SnO2/ZnSnO3 core–shell microspheres and their gas sensing properities , 2011 .

[9]  S. Manorama,et al.  Au/SnO2 an excellent material for room temperature carbon monoxide sensing , 2011 .

[10]  Yeon-Tae Yu,et al.  Synthesis of Au/SnO2 core―shell structure nanoparticles by a microwave-assisted method and their optical properties , 2011 .

[11]  Xuefeng Guo,et al.  Novel sea urchin-like hollow core–shell SnO2 superstructures: Facile synthesis and excellent ethanol sensing performance , 2010 .

[12]  Jing Wang,et al.  Silicon-based micro-gas sensors for detecting formaldehyde , 2009 .

[13]  Jinlong Zhang,et al.  Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core-shell nanoparticles. , 2008, Journal of colloid and interface science.

[14]  Zhen-Lai Zhou,et al.  The fabrication and gas-sensing characteristics of the formaldehyde gas sensors with high sensitivity , 2008 .

[15]  F. Pucciarelli,et al.  Remarks on the reactions of a tetracarboxylic porphyrin with gold and silver ions: A spectrophotometric, TEM and SEM study , 2008 .

[16]  Ichiro Matsubara,et al.  Preparation of layered organic–inorganic nanohybrid thin films of molybdenum trioxide with polyaniline derivatives for aldehyde gases sensors of several tens ppb level , 2008 .

[17]  Yeon-Tae Yu,et al.  Ag@SnO2 core–shell structure nanocomposites , 2007 .

[18]  Rong-Hua Ma,et al.  A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection , 2007 .

[19]  K. Chou,et al.  Fabrication and characterization of silver core and porous silica shell nanocomposite particles , 2007 .

[20]  C. Yeh,et al.  Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures , 2006 .

[21]  Qing Peng,et al.  Fe2O3/ZnO core–shell nanorods for gas sensors , 2006 .

[22]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[23]  Terry A. Ring,et al.  NiO thin-film formaldehyde gas sensor , 2001 .

[24]  Duk-Dong Lee,et al.  Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis , 2001 .

[25]  P. Mulvaney,et al.  Au@SnO2 Core–Shell Nanocapacitors , 2000 .

[26]  C. R. A. Catlow,et al.  Study of Surface Segregation of Antimony on SnO2 Surfaces by Computer Simulation Techniques , 1999 .