Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density

Artificial Neural Network (ANN) is often used to solve forecasting cases. As in this study. The artificial neural network used is with backpropagation algorithm. The study focused on cases concerning overcrowding forecasting based District in Simalungun in Indonesia in 2010-2015. The data source comes from the Central Bureau of Statistics of Simalungun Regency. The population density forecasting its future will be processed using backpropagation algorithm focused on binary sigmoid function (logsig) and a linear function of identity (purelin) with 5 network architecture model used the 3-5-1, 3-10-1, 3-5 -10-1, 3-5-15-1 and 3-10-15-1. Results from 5 to architectural models using Neural Networks Backpropagation with binary sigmoid function and identity functions vary greatly, but the best is 3-5-1 models with an accuracy of 94%, MSE, and the epoch 0.0025448 6843 iterations. Thus, the use of binary sigmoid activation function (logsig) and the identity function (purelin) on Backpropagation Neural Networks for forecasting the population density is very good, as evidenced by the high accuracy results achieved.

[1]  Linda Sari Dewi,et al.  Implementation of Artificial Intelligence in Predicting the Value of Indonesian Oil and Gas Exports With BP Algorithm , 2017 .

[2]  Agus Perdana Windarto,et al.  JARINGAN SARAF TIRUAN DALAM MEMPREDIKSI SUKUK NEGARA RITEL BERDASARKAN KELOMPOK PROFESI DENGAN BACKPROPOGATION DALAM MENDORONG LAJU PERTUMBUHAN EKONOMI , 2017 .

[3]  Agnes Novita Prediksi Pergerakan Harga Saham Pada Bank Terbesar Di Indonesia Dengan Metode Backpropagation Neural Network , 2017 .

[4]  Sitti Amalia Pengenalan Digit 0 Sampai 9 Menggunakan Ekstraksi Ciri MFCC dan Jaringan Syaraf Tiruan Backpropagation , 2017 .

[5]  Zairi Ismael Rizman,et al.  MULTILAYER PERCEPTRON BASED ACTIVATION FUNCTION ON HEART ABNORMALITY ACTIVITY , 2018 .

[6]  Budi Warsito,et al.  PEMODELAN JARINGAN SYARAF TIRUAN DENGAN ALGORITMA ONE STEP SECANT BACKPROPAGATION DALAM RETURN KURS RUPIAH TERHADAP DOLAR AMERIKA SERIKAT , 2017 .

[7]  Anjar Wanto,et al.  Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation , 2017 .

[8]  Nadia,et al.  Plate Recognition Using Backpropagation Neural Network and Genetic Algorithm , 2017, ICCSCI.

[9]  Budiharjo,et al.  Implementation of Neural Networks in Predicting the Understanding Level of Students Subject , 2016 .

[10]  Zhihui Wu,et al.  Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization , 2017, PloS one.

[11]  P. Magrez [Artificial intelligence in medicine]. , 1986, Revue medicale de Bruxelles.

[12]  Daniel Gianola,et al.  Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle , 2015, Genetics Selection Evolution.

[13]  A. Santoso,et al.  Penerapan Metode Jaringan Syaraf Tiruan Backpropagation Untuk Meramalkan Harga Saham (IHSG) , 2016 .

[14]  C. Ugwu,et al.  Machine Learning Application for Stock Market Price Prediction. , 2014 .

[15]  Xu Li,et al.  Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA) , 2017 .