A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks

Quantum walks have emerged as an interesting approach to implementing quantum information processing task in recent years. In this work, we take advantage of the properties of quantum walks to design a novel kind of flexible and conclusive quantum teleportation scheme of multiple arbitrary qubits. First, two-walker quantum walks on three types of quantum structures, the line, the cycle and two-vertice complete graph with loops, are utilized to accomplish the teleportation of an arbitrary 2-qubit state. Second, without loss of generality, a generalization for teleporting an arbitrary N-qubit state is also shown by N-walker quantum walks on two-vertice complete graph with loops. Our scheme has two merits. (i) Three different quantum-walk structures can be used to teleport an arbitrary N-qubit state, which means that one can implement the scheme flexibly, depending on the concrete experimental environment. (ii) The prior entangled state is not necessarily prepared, as multiple-walker quantum walks may contain entanglement. In addition, the single-particle projective measurement and single-qubit gate are required, rather than a joint measurement and controlled-NOT gate, which will possibly simplify experimental realizations of this scheme. This work stimulates us to explore more potential applications of multi-walker quantum walks.

[1]  Miquel Montero,et al.  Quantum and random walks as universal generators of probability distributions , 2016, 1609.06711.

[2]  Barry C Sanders,et al.  Quantum walk on a line for a trapped ion. , 2009, Physical review letters.

[3]  Igor Jex,et al.  Increasing the Dimensionality of Quantum Walks Using Multiple Walkers , 2012, 1205.1850.

[4]  I. Jex,et al.  Directional correlations in quantum walks with two particles , 2011, 1102.4445.

[5]  Qinghao Wang,et al.  Repelling, binding, and oscillating of two-particle discrete-time quantum walks , 2016 .

[6]  Zhuo-Liang Cao,et al.  Entanglement swapping via three-step quantum walk-like protocol , 2017 .

[7]  Y. Omar,et al.  Quantum walk on a line with two entangled particles (7 pages) , 2006 .

[8]  G. S. Agarwal,et al.  Quantum random walk of two photons in separable and entangled states , 2007 .

[9]  L. Rigovacca,et al.  Two-walker discrete-time quantum walks on the line with percolation , 2015, Scientific Reports.

[10]  Andris Ambainis,et al.  Quantum walks driven by many coins , 2002, quant-ph/0210161.

[11]  N. Spagnolo,et al.  Quantum state engineering using one-dimensional discrete-time quantum walks , 2017, 1710.10518.

[12]  P. Ribeiro,et al.  Aperiodic quantum random walks. , 2004, Physical review letters.

[13]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[14]  A. Schreiber,et al.  Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation , 2010, 1006.5556.

[15]  Jinhyoung Lee,et al.  Multipartite entanglement for entanglement teleportation , 2002, quant-ph/0201069.

[16]  Noah Linden,et al.  Inhomogeneous quantum walks , 2009, 0906.3692.

[17]  Chaobin Liu Asymptotic distributions of quantum walks on the line with two entangled coins , 2012, Quantum Inf. Process..

[18]  Guang-Can Guo,et al.  Multiparticle Generalization of Teleportation , 2000 .

[19]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[20]  G. Rigolin Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement , 2004, quant-ph/0407219.

[21]  Kaushik Nandi,et al.  Quantum Teleportation of a Two Qubit State Using GHZ-Like State , 2014 .

[22]  Alexandre C. Orthey,et al.  Asymptotic entanglement in quantum walks from delocalized initial states , 2017, Quantum Inf. Process..

[23]  Will Flanagan,et al.  Controlling discrete quantum walks: coins and initial states , 2003 .

[24]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[25]  Miquel Montero Invariance in quantum walks with time-dependent coin operators , 2014 .

[26]  Chaobin Liu,et al.  One-dimensional quantum random walks with two entangled coins , 2009 .

[27]  Z. Gedik,et al.  Qubit state transfer via discrete-time quantum walks , 2014, 1407.0689.

[28]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[29]  J. C. Soriano,et al.  Quantum walk with a time-dependent coin , 2006 .

[30]  Andrew Forbes,et al.  Implementing quantum walks using orbital angular momentum of classical light. , 2012, Physical review letters.

[31]  Rong Zhang,et al.  One-dimensional quantum walks with single-point phase defects , 2014 .

[32]  Martin Stefanák,et al.  Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs , 2016, Quantum Inf. Process..

[33]  Changxing Pei,et al.  Quantum Teleportation of Eight-Qubit State via Six-Qubit Cluster State , 2018 .

[34]  Tomasz Luczak,et al.  Quantum walks on cycles , 2003 .

[35]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[36]  Paweł Kurzyński,et al.  Quantum walk as a generalized measuring device. , 2012, Physical review letters.

[37]  Zongpeng Li,et al.  Controlled Secure Direct Communication Protocol via the Three-Qubit Partially Entangled Set of States , 2019 .

[38]  Pawel Kurzynski,et al.  Discrete-time quantum walk approach to state transfer , 2011, 1103.4185.

[39]  Colin Benjamin,et al.  Implementing Parrondo’s paradox with two-coin quantum walks , 2017, Royal Society Open Science.

[40]  Jian Li,et al.  Quantum network communication: a discrete-time quantum-walk approach , 2017, Science China Information Sciences.

[41]  Roberto Morandotti,et al.  Realization of quantum walks with negligible decoherence in waveguide lattices. , 2007, Physical review letters.

[42]  Akito Suzuki,et al.  Asymptotic velocity of a position-dependent quantum walk , 2015, Quantum Inf. Process..

[43]  Masahito Hayashi,et al.  Prior entanglement between senders enables perfect quantum network coding with modification , 2007, 0706.0197.

[44]  Jian Li,et al.  Perfect state transfer and efficient quantum routing: a discrete-time quantum walk approach , 2014, 1405.6422.

[45]  Barry C Sanders,et al.  Experimental quantum-walk revival with a time-dependent coin. , 2015, Physical review letters.

[46]  Barry C. Sanders,et al.  Two quantum walkers sharing coins , 2011, 1112.1487.

[47]  Etsuo Segawa,et al.  Limit measures of inhomogeneous discrete-time quantum walks in one dimension , 2011, Quantum Inf. Process..

[48]  S. Bose,et al.  Quantum walks with entangled coins , 2004, quant-ph/0411151.

[49]  S. D. Berry,et al.  Two-particle quantum walks: Entanglement and graph isomorphism testing , 2011 .

[50]  Neil B. Lovett,et al.  Universal quantum computation using the discrete-time quantum walk , 2009, 0910.1024.

[51]  Viv Kendon,et al.  Entanglement in coined quantum walks on regular graphs , 2005 .

[52]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[53]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[54]  Yun Shang,et al.  Generalized teleportation by quantum walks , 2017, Quantum Inf. Process..

[55]  Avatar Tulsi,et al.  Faster quantum-walk algorithm for the two-dimensional spatial search , 2008, 0801.0497.