Adaptive control allocation

In this work we address the control allocation problem for a nonlinear over-actuated time-varying system where parameters affine in the effector model may be assumed unknown. Instead of optimizing the control allocation at each time instant, a dynamic approach is considered by constructing update-laws that represent asymptotically optimal allocation search and adaptation. Using Lyapunov analysis for cascaded set-stable systems, uniform global/local asymptotic stability is guaranteed for the sets described by the system, the optimal allocation update-law and the adaptive update-law.

[1]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[2]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[3]  R. Abraham,et al.  Manifolds, tensor analysis, and applications: 2nd edition , 1988 .

[4]  A. Banerjee Convex Analysis and Optimization , 2006 .

[5]  Ola Härkegård,et al.  Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation , 2002, CDC.

[6]  D. Enns CONTROL ALLOCATION APPROACHES , 1998 .

[7]  Antonio Loría,et al.  Relaxed persistency of excitation for uniform asymptotic stability , 2001, IEEE Trans. Autom. Control..

[8]  M.W. Oppenheimer,et al.  Model predictive dynamic control allocation with actuator dynamics , 2004, Proceedings of the 2004 American Control Conference.

[9]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[10]  Marc Bodson,et al.  Evaluation of optimization methods for control allocation , 2001 .

[11]  O. J. Sordalen,et al.  Optimal thrust allocation for marine vessels , 1997 .

[12]  T.A. Johansen,et al.  Cascade lemma for set-stable systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[13]  Tor Arne Johansen,et al.  Optimizing nonlinear adaptive control allocation , 2005 .

[14]  T. Johansen Optimizing nonlinear control allocation , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[15]  R.V. Monopoli,et al.  Adaptive control: The model reference approach , 1981, Proceedings of the IEEE.

[16]  Antonio Loría,et al.  Integral Characterizations of Uniform Asymptotic and Exponential Stability with Applications , 2002, Math. Control. Signals Syst..

[17]  L. Praly,et al.  Adding integrations, saturated controls, and stabilization for feedforward systems , 1996, IEEE Trans. Autom. Control..

[18]  Tor Arne Johansen,et al.  Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming , 2004, IEEE Transactions on Control Systems Technology.

[19]  Thor I. Fossen,et al.  Fuel-efficient rudder and propeller control allocation for marine craft: experiments with a model ship , 2003, IEEE Trans. Control. Syst. Technol..

[20]  A. Teel,et al.  Control Allocation and Zero Dynamics , 1996 .

[21]  T. Johansen,et al.  Efficient Optimal Constrained Control Allocation via Multiparametric Programming , 2005 .

[22]  T.A. Johansen,et al.  Adaptive Optimizing Dynamic Control Allocation Algorithm for Yaw Stabilization of an Automotive Vehicle using Brakes , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[23]  O. Harkegard Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[24]  M.W. Oppenheimer,et al.  Dynamic control allocation with asymptotic tracking of time-varying control input commands , 2005, Proceedings of the 2005, American Control Conference, 2005..

[25]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .