Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization.

We report the synthesis of Methylammonium Lead Iodide (CH(3)NH(3)PbI(3)) nanowires by a low temperature solution processed crystallization using a simple slip-coating method. The anisotropic particle shape exhibits advantages over nanoparticles in terms of charge transport under illumination. These results provide a basis for solvent-mediated tailoring of structural properties like the crystallite size and orientation in trihalide perovskite thin films, which, once implemented into a device, may ultimately result in an enhanced charge carrier extraction.

[1]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[2]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[3]  Chang-Hua Liu,et al.  Graphene photodetectors with ultra-broadband and high responsivity at room temperature. , 2014, Nature nanotechnology.

[4]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[5]  Zhongfan Liu,et al.  Novel graphene–oxide–semiconductor nanowire phototransistors , 2014 .

[6]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[7]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[8]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[9]  H. Butt,et al.  Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells. , 2014, Nanoscale.

[10]  H. Snaith,et al.  The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. , 2014, The journal of physical chemistry letters.

[11]  Y. Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[12]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[13]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[14]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[15]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[16]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[17]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[18]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[19]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[20]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[21]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[22]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[23]  Qi Jie Wang,et al.  Broadband high photoresponse from pure monolayer graphene photodetector , 2013, Nature Communications.

[24]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[25]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[26]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[27]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[28]  N. Park,et al.  Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 , 2012, Nanoscale Research Letters.

[29]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[30]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[31]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[32]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[33]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[34]  A. Weidenkaff,et al.  CaMn(1-x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. , 2008, Inorganic chemistry.

[35]  B. Boukamp The amazing perovskite anode , 2003, Nature materials.

[36]  Y. Wang,et al.  Superconductivity in the non-oxide perovskite MgCNi3 , 2001, Nature.

[37]  Yasuhiro Shimizu,et al.  OXYGEN SENSOR USING PEROVSKITE-TYPE OXIDES: MEASUREMENTS OF ELECTRICAL CHARACTERISTICS. , 1986 .

[38]  E. Pytte Theory of Perovskite Ferroelectrics , 1972 .