Grafted polymer under shear flow

A self-attracting-self-avoiding walk model of polymer chain on a square lattice has been used to gain an insight into the behaviour of a polymer chain under shear flow in a slit of width L. Using exact enumeration technique, we show that at high temperature, the polymer acquires the extended state continuously increasing with shear stress. However, at low temperature the polymer exhibits two transitions: a transition from the coiled to the globule state and a transition to a stem-flower like state. For a chain of finite length, we obtained the exact monomer density distributions across the layers at different temperatures. The change in density profile with shear stress suggests that the polymer under shear flow can be used as a molecular gate with potential application as a sensor.