Hidden Extreme Multistability, Antimonotonicity and Offset Boosting Control in a Novel Fractional-Order Hyperchaotic System Without Equilibrium

Recently, the notion of hidden extreme multistability and hidden attractors is very attractive in chaos theory and nonlinear dynamics. In this paper, by utilizing a simple state feedback control te...

[1]  Giuseppe Grassi,et al.  Elegant Chaos in Fractional-Order System without Equilibria , 2013 .

[2]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[3]  Jacques Kengne,et al.  Dynamical analysis of a simple autonomous jerk system with multiple attractors , 2016 .

[4]  Chien-Cheng Tseng,et al.  Design of FIR and IIR fractional order Simpson digital integrators , 2007, Signal Process..

[5]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[6]  Ivo Petrás,et al.  Modeling and numerical analysis of fractional-order Bloch equations , 2011, Comput. Math. Appl..

[7]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[8]  Karthikeyan Rajagopal,et al.  FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization , 2017 .

[9]  Julien Clinton Sprott,et al.  Recent new examples of hidden attractors , 2015 .

[10]  Ahmed S. Elwakil,et al.  Experimental behavior evaluation of series and parallel connected constant phase elements , 2017 .

[11]  Z. Njitacke Tabekoueng,et al.  Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit. , 2015, Chaos.

[12]  Zhijun Li,et al.  One to four-wing chaotic attractors coined from a novel 3D fractional-order chaotic system with complex dynamics , 2018, Chinese Journal of Physics.

[13]  Christos Volos,et al.  Coexistence of hidden chaotic attractors in a novel no-equilibrium system , 2017 .

[14]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[15]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[16]  R. E. Amritkar,et al.  Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Giuseppe Grassi,et al.  On the simplest fractional-order memristor-based chaotic system , 2012 .

[18]  Simin Yu,et al.  Generation of multi-wing chaotic attractor in fractional order system , 2011 .

[19]  Viet-Thanh Pham,et al.  Synchronization and circuit design of a chaotic system with coexisting hidden attractors , 2015 .

[20]  P. Brzeski,et al.  Controlling multistability in coupled systems with soft impacts , 2017 .

[21]  Awadhesh Prasad,et al.  Controlling Dynamics of Hidden Attractors , 2015, Int. J. Bifurc. Chaos.

[22]  Hongyan Jia,et al.  Topological horseshoe analysis and circuit realization for a fractional-order Lü system , 2013 .

[23]  U. Feudel,et al.  Control of multistability , 2014 .

[24]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[25]  S K Dana,et al.  How to obtain extreme multistability in coupled dynamical systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Qiang Lai,et al.  Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria , 2018 .

[27]  Guangyi Wang,et al.  A simple meminductor-based chaotic system with complicated dynamics , 2017 .

[28]  Shin Murakami,et al.  Dynamic Response and Stability of a Rotating Asymmetric Shaft Mounted on a Flexible Base , 1999 .

[29]  Sundarapandian Vaidyanathan,et al.  Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system , 2015 .

[30]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[31]  Arun R. Srinivasa,et al.  Effect of Nonlinear Stiffness on the Motion of a Flexible Pendulum , 2002 .

[32]  S. K. Dana,et al.  Extreme multistability: Attractor manipulation and robustness. , 2015, Chaos.

[33]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[34]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[35]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[36]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[37]  Julien Clinton Sprott,et al.  Variable-boostable chaotic flows , 2016 .

[38]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[39]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[40]  Sundarapandian Vaidyanathan,et al.  Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities , 2014 .

[41]  Binoy Krishna Roy,et al.  An enhanced multi-wing fractional-order chaotic system with coexisting attractors and switching hybrid synchronisation with its nonautonomous counterpart , 2017 .

[42]  Giuseppe Grassi,et al.  Chaos in a new fractional-order system without equilibrium points , 2014, Commun. Nonlinear Sci. Numer. Simul..

[43]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[44]  Giuseppe Grassi,et al.  Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization , 2015 .

[45]  Ahmed S. Elwakil,et al.  Experimental demonstration of fractional-order oscillators of orders 2.6 and 2.7 , 2017 .

[46]  Christos Volos,et al.  Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable , 2017 .

[47]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[48]  Awadhesh Prasad,et al.  Complicated basins and the phenomenon of amplitude death in coupled hidden attractors , 2014 .

[49]  Luigi Fortuna,et al.  Memristor Crossbar for Adaptive Synchronization , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[50]  Long-Jye Sheu,et al.  A speech encryption using fractional chaotic systems , 2011 .

[51]  Kehui Sun,et al.  Dynamical properties and complexity in fractional-order diffusionless Lorenz system , 2016 .

[52]  Buncha Munmuangsaen,et al.  A new five-term simple chaotic attractor , 2009 .

[53]  C. Psychalinos,et al.  Approximation of the Fractional-Order Laplacian $s^\alpha$ As a Weighted Sum of First-Order High-Pass Filters , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[54]  Firdaus E. Udwadia,et al.  An efficient QR based method for the computation of Lyapunov exponents , 1997 .

[55]  António M. Lopes,et al.  Generation of a family of fractional order hyper-chaotic multi-scroll attractors , 2017 .

[56]  Zhijun Li,et al.  Dynamics, circuit implementation and synchronization of a new three-dimensional fractional-order chaotic system , 2017 .

[57]  Kehui Sun,et al.  Solution and dynamics analysis of a fractional‐order hyperchaotic system , 2016 .

[58]  Sen Zhang,et al.  Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability. , 2018, Chaos.

[59]  Xiaofeng Liao,et al.  A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation , 2012 .

[60]  Qiang Lai,et al.  Various Types of Coexisting Attractors in a New 4D Autonomous Chaotic System , 2017, Int. J. Bifurc. Chaos.

[61]  Ling Zhou,et al.  Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator , 2018, Int. J. Bifurc. Chaos.

[62]  Osvaldo A. Rosso,et al.  Intensive statistical complexity measure of pseudorandom number generators , 2005 .

[63]  Binoy Krishna Roy,et al.  The simplest 4-D chaotic system with line of equilibria, chaotic 2-torus and 3-torus behaviour , 2017 .

[64]  Huagan Wu,et al.  Coexisting infinitely many attractors in active band-pass filter-based memristive circuit , 2016 .

[65]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.