An inductorless high linear UWB Cascode LNA with tunable active resistance feedback and post-linearization technique

An inductorless Cascode SiGe low noise amplifier (LNA) that achieves high linearity using tunable active feedback and post-linearization technique is proposed for ultra-wideband (UWB) application. Tunable active feedback composed of NMOS and parallel resistor is adopted to improve the linearity instead of the resistor feedback. The tunablity of active feedback can compensate the gain and bandwidth degradation due to the process variation and parasitic parameters. The post-linearization technique by the use of resistance-capacitance (RC) parallel network with an additional diode connected transistor further improves the linearity. Theoretical analysis is performed using Volterra series to obtain an insight into the linearity behavior over the UWB frequency range. The LNA is implemented using TSMC 0.35@mm SiGe BiCMOS technology. Compared with the conventional Cascode LNA, IIP3 of the proposed LNA is improved by 51dBm. Meanwhile, the novel LNA exhibits superior variation of group delay 1ps, and achieves the noise figure of 3.8~4.9dB, the gain of 8.8~10.2dB, gain flatness of +/-0.7dB, good input and output impedances matching, and unconditional stablity in the whole band.

[1]  Kartikeya Mayaram,et al.  Analog integrated circuits for communication - principles, simulation and design , 1990 .

[2]  Vladimir Aparin,et al.  A cellular-band CDMA 0.25-/spl mu/m CMOS LNA linearized using active post-distortion , 2005, IEEE Journal of Solid-State Circuits.

[3]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[4]  Gary Brown,et al.  Linearization of CMOS LNA's via optimum gate biasing , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[5]  R. Meyer,et al.  High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages , 1998, IEEE J. Solid State Circuits.

[6]  Edgar Sánchez-Sinencio,et al.  A linearization technique for RF low noise amplifier , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[7]  R. Harjani,et al.  A +18 dBm IIP3 LNA in 0.35 /spl mu/m CMOS , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[8]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[9]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[10]  Shen-Iuan Liu,et al.  A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers , 2007, IEEE Journal of Solid-State Circuits.

[11]  C.-H. Lee,et al.  A very low power SiGe LNA for UWB application , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[12]  Hyun-Kyu Yu,et al.  A 2GHz 16dBm IIP3 low noise amplifier in 0.25/spl mu/m CMOS technology , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[13]  Heng Zhang,et al.  A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA , 2008, IEEE Journal of Solid-State Circuits.

[14]  Yongwang Ding,et al.  A +18dBm IIP3 LNA in 0.35μm CMOS , 2001 .

[15]  Piet Wambacq,et al.  Distortion analysis of analog integrated circuits , 1998 .

[16]  Fan Chen,et al.  Silicon-Germanium Heterojunction Bipolar Transistors , 2002 .

[17]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.