Modeling Dispersive Coupling and Losses of Localized Optical and Mechanical Modes in Optomechanical Crystals References and Linkssensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum

Periodically structured materials can sustain both optical and mechanical excitations which are tailored by the geometry. Here we analyze the properties of dispersively coupled planar photonic and phononic crystals: optomechanical crystals. In particular, the properties of co-resonant optical and mechanical cavities in quasi-1D (patterned nanobeam) and quasi-2D (patterned membrane) geometries are studied. It is shown that the mechanical Q and optomechanical coupling in these structures can vary by many orders of magnitude with modest changes in geometry. An intuitive picture is developed based upon a perturbation theory for shifting material boundaries that allows the optomechanical properties to be designed and optimized. Several designs are presented with mechanical frequency approximately 1-10 GHz, optical Q-factor Qo > 107, motional masses meff approximately 100 femtograms, optomechanical coupling length LOM < 5 microm, and clampinig losses that are exponentially suppressed with increasing number of phononic crystal periods (radiation-limited mechanical Q-factor Qm > 107 for total device size less than 30 microm).

J. M. Worlock | Oskar Painter | Jasper Chan | Matt Eichenfield | E. R. Thoen | Coherent | Amir H Safavi-Naeini | Kerry J Vahala | M. Roukes | J. Vasseur | P. Deymier | K. Vahala | M. Ibanescu | J. Joannopoulos | C. Michel | L. Pinard | T. Briant | A. Miard | O. Painter | A. Bruchhausen | J. Sánchez-Dehesa | D. Photiadis | J. Bucaro | J. Vignola | M. Eichenfield | R. Martinez-Sala | D. Caballero | Jasper Chan | A. Safavi-Naeini | F. Khalili | E. Steinsland | T. Kalkbrenner | I. El-Kady | F. Blaser | I. Frank | A. Fainstein | D. Peyrade | O. Weisberg | J. Rodier | G. Breitenbach | M. Khan | B. Jusserand | Y. Hadjar | M. Tuck | J. Mackowski | T. Charvolin | B. Djafari-Rouhani | P. R. Villeneuve | S. Vyachanin | P. Lalanne | R. Conradt | J. Borenstein | E. Vignes | H. Rokhsari | L. Kimerling | Photonic | P. Halevi | J. Chan | E. Ippen | M. Mccutcheon | A. Scherer | S. Fan | I. Dapkus | M. Lončar | A. Yariv | G. Steinmeyer | A. Huynh | A. Heidmann | K. Thorne | J. Llinares | F. Meseguer | K. Vahala | M. Eichenfield | M. Pinard | M. Paternostro | S. Gigan | A. Zeilinger | O Painter | R. Lee | J. D. O 'brien | Kim | H. Böhm | M. Skorobogatiy | B. Perrin | A. Lemaître | L. Rousseau | Y. Fink | J. M. Eichenfield | R. Chan | K. J. Camacho | O. Vahala | H. Smith | M. F. Su | O. Painter | Thomas J Watson | X. Liu | T Gorishnyy | E. L. Thomas | M Eichenfield | R. Camacho | Kippenberg | T. Carmon | Deotare | E. M. Wright | J. Fleming | M. Sorel | E. M. L. Maldovan | Thomas | A. M. Trigo | B. Fainstein | V. Jusserand | Thierry-Mieg | Foresi | J. Ferrera | J Chan | M Pinard | O Arcizet | P. Cohadon | Fran-Cais | I Tittonen | T. Müller | S. Schiller | N. Blanc | V B Braginski | V Braginsky | G. Langer | J. B. Hertzberg | K. C. Schwab | D. Bäuerle | M. As-Pelmeyer | Y.-C Wen | L.-C Chou | H.-H Lin | V. Gusev | K. Lin | C.-K. Sun | N D Lanzillotti-Kimura | Iii | Microfabricated | J V Sánchez-Pérez | C. Rubio | F. Gálvez | W M Robertson | J. F. R. Iii | Khelif | P Meystre | J. Mccullen | Johnson | Perturbation | P Velha | J. D. Hugonin | E. Picard | E. Hadji | Ultracompact | A R Md Zain | N. P. Johnson | R. D. De La | M W Mccutcheon | K. Srinivasan | P. E. Barclay | J.-H Jang | C. Koh | M S Kushwaha | L. Dobrzyński | B H Houston | M. H. Marcus | A Duwel | J. Gorman | M. Weinstein | P. Ward | W Fon

[1]  E. Wright,et al.  Theory of radiation-pressure-driven interferometers , 1985 .

[2]  Kerry J. Vahala,et al.  Back-action limit of linewidth in an optomechanical oscillator , 2008 .

[3]  M. Notomi,et al.  Ultrahigh-Q nanocavity with 1D photonic gap. , 2008, Optics express.

[4]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  M Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[6]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[7]  Ilkka Tittonen,et al.  Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits , 1999 .

[8]  Tal Carmon,et al.  Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. , 2009, Physical review letters.

[9]  Thomas A. Read,et al.  The Internal Friction of Single Metal Crystals , 1940 .

[10]  Dirk Bouwmeester,et al.  Sub-kelvin optical cooling of a micromechanical resonator , 2006, Nature.

[11]  Physical Review , 1965, Nature.

[12]  Yun-Bo Yi Geometric effects on thermoelastic damping in MEMS resonators , 2008 .

[13]  Oskar Painter,et al.  Momentum space design of high-Q photonic crystal optical cavities. , 2002, Optics express.

[14]  H. Draheim,et al.  Measurement Science and Technology , 1983, 2022 57th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST).

[15]  D. Photiadis,et al.  Thermoelastic loss in microscale oscillators , 2002 .

[16]  P. Deotare,et al.  Coupled photonic crystal nanobeam cavities , 2009, 0905.0109.

[17]  Elsevier Sdol Sensors and Actuators A: Physical , 2009 .

[18]  A. Cleland Foundations of nanomechanics , 2002 .

[19]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[20]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[21]  A. Heidmann,et al.  Effective mass in quantum effects of radiation pressure , 1999, quant-ph/9901057.

[22]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[23]  David Bindel,et al.  Elastic PMLs for resonator anchor loss simulation , 2005 .

[24]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[25]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[26]  October I Physical Review Letters , 2022 .

[27]  M Trigo,et al.  Confinement of acoustical vibrations in a semiconductor planar phonon cavity. , 2002, Physical review letters.

[28]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[29]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[30]  E. Thomas,et al.  Direct observation of a hypersonic band gap in two-dimensional single crystalline phononic structures , 2007 .

[31]  R. Martínez-Sala,et al.  SOUND ATTENUATION BY A TWO-DIMENSIONAL ARRAY OF RIGID CYLINDERS , 1998 .

[32]  Abdelkrim Khelif,et al.  Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials , 2003 .

[33]  A. Peres When is a quantum measurement , 1986 .

[34]  A. Adibi,et al.  Large simultaneous band gaps for photonic and phononic crystal slabs , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[35]  P. Lalanne,et al.  Slow-wave effect and mode-profile matching in photonic crystal microcavities , 2005 .

[36]  S. Strigin,et al.  Parametric oscillatory instability in Fabry-Perot interferometer , 2001, gr-qc/0107079.

[37]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[38]  Marc Sorel,et al.  Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). , 2008, Optics express.

[39]  Marko Loncar,et al.  Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. , 2008, Optics express.

[40]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[41]  E. Thomas,et al.  Simultaneous complete elastic and electromagnetic band gaps in periodic structures , 2006 .

[42]  W. M. Robertson,et al.  Measurement of acoustic stop bands in two-dimensional periodic scattering arrays , 1998 .

[43]  R. Bishop,et al.  Stress Waves in Solids , 1954, Nature.

[44]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[45]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[46]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[47]  Roy H. Olsson,et al.  Microfabricated phononic crystal devices and applications , 2008 .

[48]  A. Sopczak Neutral Higgs boson mass constraints in the minimal supersymmetric standard model from searches in $\rm e^+e^-$ collisions , 1999 .

[49]  S. Vyatchanin,et al.  Low quantum noise tranquilizer for Fabry-Perot interferometer , 2002 .

[50]  Oskar Painter,et al.  Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[51]  J. Borenstein,et al.  Experimental study of thermoelastic damping in MEMS gyros , 2003 .

[52]  P. C. Pandey,et al.  The Journal of the Acoustical Society of America , 1939 .

[53]  Michael L. Roukes,et al.  Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K , 2002 .

[54]  P. Meystre,et al.  Optical bistability and mirror confinement induced by radiation pressure , 1983 .

[55]  A. V. Nazarkin,et al.  Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators , 2009 .

[56]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[57]  Mehmet F. Su,et al.  Microfabricated VHF acoustic crystals and waveguides , 2008 .

[58]  Physics Letters , 1962, Nature.

[59]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[60]  M. Torres,et al.  ULTRASONIC BAND GAP IN A PERIODIC TWO-DIMENSIONAL COMPOSITE , 1998 .

[61]  Markus B. Raschke,et al.  Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies , 2006 .

[62]  Chi‐Kuang Sun,et al.  Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects , 2007 .

[63]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[64]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[65]  Philippe Lalanne,et al.  Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance , 2006 .

[66]  W. Schultz,et al.  Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method , 2004 .