Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models

[1]  L. Shihabuddin,et al.  Sustained Therapeutic Reversal of Huntington's Disease by Transient Repression of Huntingtin Synthesis , 2012, Neuron.

[2]  Steven Finkbeiner,et al.  High-throughput screening in primary neurons. , 2012, Methods in enzymology.

[3]  D. Cleveland,et al.  Understanding the role of TDP-43 and FUS/TLS in ALS and beyond , 2011, Current Opinion in Neurobiology.

[4]  S. Loeillet,et al.  XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast , 2011, Nature.

[5]  E. Rogaeva,et al.  RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS , 2011, Molecular and Cellular Neuroscience.

[6]  A. Gitler,et al.  RNA-binding proteins with prion-like domains in ALS and FTLD-U , 2011, Prion.

[7]  Daniela C. Zarnescu,et al.  Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. , 2011, Human molecular genetics.

[8]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[9]  A. Gitler,et al.  Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS , 2011, PLoS biology.

[10]  A. Gitler,et al.  TDP-43 toxicity in yeast. , 2011, Methods.

[11]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[12]  J. Trojanowski,et al.  Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. , 2011, The Journal of clinical investigation.

[13]  J. Gerst,et al.  Visualizing endogenous mRNAs in living yeast using m-TAG, a PCR-based RNA aptamer integration method, and fluorescence microscopy. , 2011, Methods in molecular biology.

[14]  S. Akbarian,et al.  The C-Terminal TDP-43 Fragments Have a High Aggregation Propensity and Harm Neurons by a Dominant-Negative Mechanism , 2010, PloS one.

[15]  J. Lykke-Andersen,et al.  Upf1 ATPase-Dependent mRNP Disassembly Is Required for Completion of Nonsense- Mediated mRNA Decay , 2010, Cell.

[16]  Frederick P. Roth,et al.  Identification of Neuronal RNA Targets of TDP-43-containing Ribonucleoprotein Complexes , 2010, The Journal of Biological Chemistry.

[17]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[18]  Clotilde Lagier-Tourenne,et al.  Neurodegeneration: An expansion in ALS genetics , 2010, Nature.

[19]  J. Schulz,et al.  TDP-43-Mediated Neuron Loss In Vivo Requires RNA-Binding Activity , 2010, PloS one.

[20]  Jonathan P Staley,et al.  Spliceosome discards intermediates via the DEAH box ATPase Prp43p , 2010, Proceedings of the National Academy of Sciences.

[21]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[22]  J. Highley,et al.  Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. , 2010, Archives of neurology.

[23]  Jane Y. Wu,et al.  A Drosophila model for TDP-43 proteinopathy , 2010, Proceedings of the National Academy of Sciences.

[24]  S. Finkbeiner,et al.  Cytoplasmic Mislocalization of TDP-43 Is Toxic to Neurons and Enhanced by a Mutation Associated with Familial Amyotrophic Lateral Sclerosis , 2010, The Journal of Neuroscience.

[25]  G. Comi,et al.  Mutations of FUS gene in sporadic amyotrophic lateral sclerosis , 2009, Journal of Medical Genetics.

[26]  John Q Trojanowski,et al.  Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[27]  V. Meininger,et al.  Mutations in FUS cause FALS and SALS in French and French Canadian populations , 2009, Neurology.

[28]  J. Gerst,et al.  m-TAG: a PCR-based genomic integration method to visualize the localization of specific endogenous mRNAs in vivo in yeast , 2009, Nature Protocols.

[29]  A. Gitler,et al.  TDP-43 Is Intrinsically Aggregation-prone, and Amyotrophic Lateral Sclerosis-linked Mutations Accelerate Aggregation and Increase Toxicity* , 2009, The Journal of Biological Chemistry.

[30]  L. Petrucelli,et al.  Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity , 2009, Proceedings of the National Academy of Sciences.

[31]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[32]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[33]  Martin L. Duennwald,et al.  Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. , 2008, Genes & development.

[34]  D. Geschwind,et al.  Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis , 2008, PLoS genetics.

[35]  J. Trojanowski,et al.  Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation* , 2008, Journal of Biological Chemistry.

[36]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[37]  S. Lindquist,et al.  A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity , 2008, Proceedings of the National Academy of Sciences.

[38]  A. Kakita,et al.  TDP‐43 mutation in familial amyotrophic lateral sclerosis , 2008, Annals of neurology.

[39]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[40]  J. Trojanowski,et al.  Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations , 2007, Annals of neurology.

[41]  J. Gerst,et al.  A genomic integration method to visualize localization of endogenous mRNAs in living yeast , 2007, Nature Methods.

[42]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[43]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[44]  B. Monia,et al.  Antisense oligonucleotide therapy for neurodegenerative disease. , 2006, The Journal of clinical investigation.

[45]  A. Linstedt Faculty Opinions recommendation of Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. , 2006 .

[46]  S. Lindquist,et al.  α-Synuclein Blocks ER-Golgi Traffic and Rab1 Rescues Neuron Loss in Parkinson's Models , 2006, Science.

[47]  Michael Q. Zhang,et al.  Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing , 2006, Nucleic acids research.

[48]  T. Schedl,et al.  RNA-binding proteins. , 2006, WormBook : the online review of C. elegans biology.

[49]  A. Tong,et al.  Synthetic genetic array analysis in Saccharomyces cerevisiae. , 2006, Methods in molecular biology.

[50]  T. Niki,et al.  Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities , 2006, Cell Death and Differentiation.

[51]  Sean R. Collins,et al.  A strategy for extracting and analyzing large-scale quantitative epistatic interaction data , 2006, Genome Biology.

[52]  S. Shuman,et al.  Structure–function analysis of yeast RNA debranching enzyme (Dbr1), a manganese-dependent phosphodiesterase , 2005, Nucleic acids research.

[53]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[54]  N. Yokoyama,et al.  DBR1 siRNA inhibition of HIV-1 replication , 2005, Retrovirology.

[55]  Inder M Verma,et al.  Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model , 2005, Nature Neuroscience.

[56]  K. Lynch,et al.  HnRNP L represses exon splicing via a regulated exonic splicing silencer , 2005, The EMBO journal.

[57]  Paolo Guidetti,et al.  A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease , 2005, Nature Genetics.

[58]  Steven Finkbeiner,et al.  Automated microscope system for determining factors that predict neuronal fate. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Mark R. Segal,et al.  Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death , 2004, Nature.

[60]  H. Paulson,et al.  RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia , 2004, Nature Medicine.

[61]  D. Gatfield,et al.  Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila , 2004, Nature.

[62]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[63]  Susan Lindquist,et al.  Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or α-Synuclein , 2003, Science.

[64]  L. Maquat,et al.  Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. , 2003, Molecular cell.

[65]  S. Lindquist,et al.  Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. , 2003, Science.

[66]  Haibin Xia,et al.  siRNA-mediated gene silencing in vitro and in vivo , 2002, Nature Biotechnology.

[67]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[68]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[69]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[70]  F. Larimer,et al.  Characterization of the XRN1 gene encoding a 5'-->3' exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. , 1992, Gene.

[71]  J. Boeke,et al.  Isolation and characterization of the gene encoding yeast debranching enzyme , 1991, Cell.

[72]  J. Hurwitz,et al.  Purification of a RNA debranching activity from HeLa cells. , 1987, The Journal of biological chemistry.

[73]  H. Domdey,et al.  Lariat structures are in vivo intermediates in yeast pre-mRNA splicing , 1984, Cell.