Multiple Mechanisms Switch an Electrically Coupled, Synaptically Inhibited Neuron between Competing Rhythmic Oscillators

[1]  G. Hoge,et al.  Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. , 2013, Biochimica et biophysica acta.

[2]  J. Haas,et al.  Bursts modify electrical synaptic strength , 2012, Brain Research.

[3]  Leslie C Griffith,et al.  Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect , 2012, Current Opinion in Neurobiology.

[4]  R. Calabrese,et al.  Small is beautiful: models of small neuronal networks , 2012, Current Opinion in Neurobiology.

[5]  Eve Marder,et al.  Robustness of a Rhythmic Circuit to Short- and Long-Term Temperature Changes , 2012, The Journal of Neuroscience.

[6]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  J. Haas,et al.  State-Dependent Modulation of Gap Junction Signaling by the Persistent Sodium Current , 2011, Front. Cell. Neurosci..

[8]  Roger D. Traub,et al.  Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex , 2011, The Journal of Neuroscience.

[9]  Baltazar Zavala,et al.  Activity-Dependent Long-Term Depression of Electrical Synapses , 2011, Science.

[10]  Damon G Lamb,et al.  Neural circuits controlling behavior and autonomic functions in medicinal leeches , 2011, Neural systems & circuits.

[11]  Roger D. Traub,et al.  Chemical synaptic and gap junctional interactions between principal neurons: Partners in epileptogenesis , 2011, Neural Networks.

[12]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[13]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[14]  Adam Gazzaley,et al.  In Brief , 2011, Nature Reviews Neuroscience.

[15]  E. Marder Variability, compensation, and modulation in neurons and circuits , 2011, Proceedings of the National Academy of Sciences.

[16]  Matthew T. Kaufman,et al.  An optogenetic toolbox designed for primates , 2011, Nature Neuroscience.

[17]  B. Connors,et al.  Enhanced Functions of Electrical Junctions , 2010, Neuron.

[18]  A. Selverston,et al.  Invertebrate central pattern generator circuits , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  R. Silver,et al.  Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input , 2010, Neuron.

[20]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[21]  R. H. Phaf,et al.  Good vibrations switch attention: An affective function for network oscillations in evolutionary simulations , 2010, Cognitive, affective & behavioral neuroscience.

[22]  Raag D. Airan,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.

[23]  Antony W. Goodwin,et al.  ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN , 2010 .

[24]  J. Berke,et al.  Fast oscillations in cortical‐striatal networks switch frequency following rewarding events and stimulant drugs , 2009, The European journal of neuroscience.

[25]  Stefan R. Pulver,et al.  Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. , 2009, Journal of neurophysiology.

[26]  Evan Z. Macosko,et al.  A Hub-and-Spoke Circuit Drives Pheromone Attraction and Social Behavior in C. elegans , 2009, Nature.

[27]  Evan Z. Macosko,et al.  A huband-spoke circuit drives pheromone attraction and social behaviour in C . elegans , 2009 .

[28]  Marcus Kaiser,et al.  Temporal Interactions between Cortical Rhythms , 2008, Front. Neurosci..

[29]  Kevin L. Briggman,et al.  Multifunctional pattern-generating circuits. , 2008, Annual review of neuroscience.

[30]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[31]  Sten Grillner,et al.  Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion , 2006, Neuron.

[32]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[33]  E. Marder,et al.  Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. , 2006, Journal of neurophysiology.

[34]  B. Connors,et al.  Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus , 2005, Science.

[35]  Pierre Meyrand,et al.  Electrical coupling induces bistability of rhythms in networks of inhibitory spiking neurons , 2005, The European journal of neuroscience.

[36]  E. Marder,et al.  Computational model of electrically coupled, intrinsically distinct pacemaker neurons. , 2005, Journal of neurophysiology.

[37]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[38]  Jan-Marino Ramirez,et al.  Pacemaker neurons and neuronal networks: an integrative view , 2004, Current Opinion in Neurobiology.

[39]  B. Ermentrout,et al.  Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Büschges,et al.  Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system , 2004, The European journal of neuroscience.

[41]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[42]  John Rinzel,et al.  Short duty cycle destabilizes a half-center oscillator, but gap junctions can restabilize the anti-phase pattern. , 2004, Journal of neurophysiology.

[43]  Roger D. Traub,et al.  Model of synchronized population bursts in electrically coupled interneurons containing active dendritic conductances , 1995, Journal of Computational Neuroscience.

[44]  Eve Marder,et al.  Frequency and burst duration in oscillating neurons and two-cell networks , 1993, Biological Cybernetics.

[45]  Brian Mulloney,et al.  During Fictive Locomotion, Graded Synaptic Currents Drive Bursts of Impulses in Swimmeret Motor Neurons , 2003, The Journal of Neuroscience.

[46]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[47]  M. Bennett,et al.  Electrical synapses, a personal perspective (or history) , 2000, Brain Research Reviews.

[48]  M. Bennett Seeing is relieving: electrical synapses between visualized neurons , 2000, Nature Neuroscience.

[49]  X. Wang Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons , 1999, Neuroscience.

[50]  E. Marder Electrical synapses: Beyond speed and synchrony to computation , 1998, Current Biology.

[51]  L. Abbott,et al.  On the behavior of a neural oscillator electrically coupled to a bistable element , 1998 .

[52]  Idan Segev,et al.  Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. , 1997, Journal of neurophysiology.

[53]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[54]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[55]  E. Marder,et al.  Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  E. Marder,et al.  Switching neurons are integral members of multiple oscillatory networks , 1994, Current Biology.

[57]  M. Moulins,et al.  Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  J. Rinzel,et al.  Rhythmogenic effects of weak electrotonic coupling in neuronal models. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Harris-Warrick,et al.  Recruitment of crab gastric mill neurons into the pyloric motor pattern by mechanosensory afferent stimulation. , 1991, Journal of neurophysiology.

[60]  M. Moulins,et al.  Construction of a pattern-generating circuit with neurons of different networks , 1991, Nature.

[61]  E. Marder,et al.  Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. , 1991, Journal of neurophysiology.

[62]  M. Moulins,et al.  Cellular and synaptic mechanisms responsible for a long-lasting restructuring of the lobster pyloric network. , 1990, Journal of neurophysiology.

[63]  M. Moulins,et al.  Sensory input induces long-lasting changes in the output of the lobster pyloric network. , 1990, Journal of neurophysiology.

[64]  E. Marder,et al.  The effect of electrical coupling on the frequency of model neuronal oscillators. , 1990, Science.

[65]  E. Marder,et al.  Neuropeptide fusion of two motor-pattern generator circuits , 1990, Nature.

[66]  M. Moulins,et al.  Switching of a neuron from one network to another by sensory-induced changes in membrane properties. , 1989, Science.

[67]  K G Pearson,et al.  Flight-initiating interneurons in the locust. , 1985, Journal of neurophysiology.

[68]  D. F. Russell Pattern and reset analysis of the gastric mill rhythm in a spiny lobster, Panulirus interruptus. , 1985, The Journal of experimental biology.

[69]  E Marder,et al.  Roles for electrical coupling in neural circuits as revealed by selective neuronal deletions. , 1984, The Journal of experimental biology.

[70]  B W Connors,et al.  Coupling between neurons of the developing rat neocortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  J. Miller,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. , 1982, Journal of neurophysiology.

[72]  J. Miller,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. , 1982, Journal of neurophysiology.

[73]  D. Perkel,et al.  Motor-pattern production: interaction of chemical and electrical synapses , 1981, Brain Research.

[74]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[75]  J. Miller,et al.  Rapid killing of single neurons by irradiation of intracellularly injected dye. , 1979, Science.

[76]  E. Mayeri,et al.  Functional Organization of the Cardiac Ganglion of the Lobster, Homarus americanus , 1973, The Journal of general physiology.